from __future__ import annotations import json from typing import Any, Dict, List, Optional, Tuple from agentui.providers.adapters.base import ( # [ProviderAdapter](agentui/providers/adapters/base.py:10) ProviderAdapter, insert_items, split_pos_spec, ) def _is_data_url(u: str) -> bool: # [_is_data_url()](agentui/providers/adapters/gemini.py:14) return isinstance(u, str) and u.strip().lower().startswith("data:") def _split_data_url(u: str) -> tuple[str, str]: # [_split_data_url()](agentui/providers/adapters/gemini.py:18) """ Возвращает (mime, b64) для data URL. Поддерживаем форму: data:;base64, """ try: header, b64 = u.split(",", 1) mime = "application/octet-stream" if header.startswith("data:"): header2 = header[5:] if ";base64" in header2: mime = header2.split(";base64", 1)[0] or mime elif ";" in header2: mime = header2.split(";", 1)[0] or mime elif header2: mime = header2 return mime, b64 except Exception: return "application/octet-stream", "" def _try_json(s: str) -> Any: # [_try_json()](agentui/providers/adapters/gemini.py:38) try: obj = json.loads(s) except Exception: try: obj = json.loads(s, strict=False) # type: ignore[call-arg] except Exception: return None for _ in range(2): if isinstance(obj, str): st = obj.strip() if (st.startswith("{") and st.endswith("}")) or (st.startswith("[") and st.endswith("]")): try: obj = json.loads(st) continue except Exception: break break return obj class GeminiAdapter(ProviderAdapter): # [GeminiAdapter.__init__()](agentui/providers/adapters/gemini.py:56) name = "gemini" # --- Дефолты HTTP --- def default_base_url(self) -> str: return "https://generativelanguage.googleapis.com" def default_endpoint(self, model: str) -> str: # endpoint с шаблоном model (как в исходном коде) return "/v1beta/models/{{ model }}:generateContent" # --- PROMPT: построение провайдерных структур --- def blocks_struct_for_template( self, unified_messages: List[Dict[str, Any]], context: Dict[str, Any], node_config: Dict[str, Any], ) -> Dict[str, Any]: """ Совместимо с веткой provider in {'gemini','gemini_image'} из [ProviderCallNode._blocks_struct_for_template()](agentui/pipeline/executor.py:1981). """ def _text_from_msg(m: Dict[str, Any]) -> str: c = m.get("content") if isinstance(c, list): texts = [str(p.get("text") or "") for p in c if isinstance(p, dict) and p.get("type") == "text"] return "\n".join([t for t in texts if t]) return str(c or "") sys_text = "\n\n".join([_text_from_msg(m) for m in (unified_messages or []) if m.get("role") == "system"]).strip() contents: List[Dict[str, Any]] = [] for m in (unified_messages or []): if m.get("role") == "system": continue role = "model" if m.get("role") == "assistant" else "user" c = m.get("content") parts: List[Dict[str, Any]] = [] if isinstance(c, list): for p in c: if not isinstance(p, dict): continue if p.get("type") == "text": parts.append({"text": str(p.get("text") or "")}) elif p.get("type") in {"image_url", "image"}: url = str(p.get("url") or "") if _is_data_url(url): mime, b64 = _split_data_url(url) parts.append({"inline_data": {"mime_type": mime, "data": b64}}) else: parts.append({"text": url}) else: parts.append({"text": str(c or "")}) contents.append({"role": role, "parts": parts}) d: Dict[str, Any] = { "contents": contents, "system_text": sys_text, } if sys_text: d["systemInstruction"] = {"parts": [{"text": sys_text}]} return d def normalize_segment(self, x: Any) -> List[Dict[str, Any]]: """ Совместимо с [_as_gemini_contents()](agentui/pipeline/executor.py:2521). """ cnts: List[Dict[str, Any]] = [] try: if isinstance(x, dict): if isinstance(x.get("contents"), list): return list(x.get("contents") or []) if isinstance(x.get("messages"), list): # OpenAI → Gemini for m in (x.get("messages") or []): if not isinstance(m, dict): continue role_raw = str(m.get("role") or "user") role = "model" if role_raw == "assistant" else "user" cont = m.get("content") parts: List[Dict[str, Any]] = [] if isinstance(cont, str): parts = [{"text": cont}] elif isinstance(cont, list): for p in cont: if not isinstance(p, dict): continue if p.get("type") == "text": parts.append({"text": str(p.get("text") or "")}) elif p.get("type") in {"image_url", "image"}: # Gemini не принимает внешние URL картинок как image — оставим как текстовую ссылку url = "" if isinstance(p.get("image_url"), dict): url = str((p.get("image_url") or {}).get("url") or "") elif "url" in p: url = str(p.get("url") or "") if url: parts.append({"text": url}) else: parts = [{"text": json.dumps(cont, ensure_ascii=False)}] cnts.append({"role": role, "parts": parts}) return cnts if isinstance(x, list): # Gemini contents list already if all(isinstance(c, dict) and "parts" in c for c in x): return list(x) # OpenAI messages list -> Gemini if all(isinstance(m, dict) and "content" in m for m in x): out: List[Dict[str, Any]] = [] for m in x: role_raw = str(m.get("role") or "user") role = "model" if role_raw == "assistant" else "user" cont = m.get("content") parts: List[Dict[str, Any]] = [] if isinstance(cont, str): parts = [{"text": cont}] elif isinstance(cont, list): for p in cont: if not isinstance(p, dict): continue if p.get("type") == "text": parts.append({"text": str(p.get("text") or "")}) elif p.get("type") in {"image_url", "image"}: url = "" if isinstance(p.get("image_url"), dict): url = str((p.get("image_url") or {}).get("url") or "") elif "url" in p: url = str(p.get("url") or "") if url: parts.append({"text": url}) else: parts = [{"text": json.dumps(cont, ensure_ascii=False)}] out.append({"role": role, "parts": parts}) return out # Fallback return [{"role": "user", "parts": [{"text": json.dumps(x, ensure_ascii=False)}]}] if isinstance(x, str): try_obj = _try_json(x) if try_obj is not None: return self.normalize_segment(try_obj) return [{"role": "user", "parts": [{"text": x}]}] return [{"role": "user", "parts": [{"text": json.dumps(x, ensure_ascii=False)}]}] except Exception: return [{"role": "user", "parts": [{"text": str(x)}]}] def filter_items(self, arr: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """ Совместимо с [_filter_gemini()](agentui/pipeline/executor.py:2782). Сохраняем inline_data/inlineData как есть; текстовые части — только непустые. """ out: List[Dict[str, Any]] = [] for it in (arr or []): if not isinstance(it, dict): continue parts = it.get("parts") or [] norm_parts = [] for p in parts: if isinstance(p, dict): t = p.get("text") if isinstance(t, str) and t.strip(): norm_parts.append({"text": t}) elif "inline_data" in p or "inlineData" in p: norm_parts.append(p) # изображения пропускаем как есть if norm_parts: out.append({"role": it.get("role", "user"), "parts": norm_parts}) return out def extract_system_text_from_obj(self, x: Any, render_ctx: Dict[str, Any]) -> Optional[str]: """ Совместимо с [_extract_sys_text_from_obj()](agentui/pipeline/executor.py:2676) для Gemini. """ try: # Dict if isinstance(x, dict): if "systemInstruction" in x: si = x.get("systemInstruction") def _parts_to_text(siobj: Any) -> str: try: parts = siobj.get("parts") or [] texts = [ str(p.get("text") or "") for p in parts if isinstance(p, dict) and isinstance(p.get("text"), str) and p.get("text").strip() ] return "\n".join([t for t in texts if t]).strip() except Exception: return "" if isinstance(si, dict): t = _parts_to_text(si) if t: return t if isinstance(si, list): texts = [] for p in si: if isinstance(p, dict) and isinstance(p.get("text"), str) and p.get("text").strip(): texts.append(p.get("text").strip()) t = "\n".join(texts).strip() if t: return t if isinstance(si, str) and si.strip(): return si.strip() # OpenAI system внутри messages if isinstance(x.get("messages"), list): sys_msgs = [] for m in (x.get("messages") or []): try: if (str(m.get("role") or "").lower().strip() == "system"): cont = m.get("content") if isinstance(cont, str) and cont.strip(): sys_msgs.append(cont.strip()) elif isinstance(cont, list): for p in cont: if ( isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str) and p.get("text").strip() ): sys_msgs.append(p.get("text").strip()) except Exception: continue if sys_msgs: return "\n\n".join(sys_msgs).strip() # List if isinstance(x, list): if all(isinstance(m, dict) and "role" in m for m in x): sys_msgs = [] for m in x: try: if (str(m.get("role") or "").lower().strip() == "system"): cont = m.get("content") if isinstance(cont, str) and cont.strip(): sys_msgs.append(cont.strip()) elif isinstance(cont, list): for p in cont: if ( isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str) and p.get("text").strip() ): sys_msgs.append(p.get("text").strip()) except Exception: continue if sys_msgs: return "\n\n".join(sys_msgs).strip() # Gemini contents list -> попробуем взять из входящего snapshot if all(isinstance(c, dict) and "parts" in c for c in x): try: inc = (render_ctx.get("incoming") or {}).get("json") or {} si = inc.get("systemInstruction") if si is not None: return self.extract_system_text_from_obj({"systemInstruction": si}, render_ctx) except Exception: pass return None except Exception: return None def combine_segments( self, blocks_struct: Dict[str, Any], pre_segments_raw: List[Dict[str, Any]], raw_segs: List[str], render_ctx: Dict[str, Any], pre_var_paths: set[str], render_template_simple_fn, var_macro_fullmatch_re, detect_vendor_fn, ) -> Dict[str, Any]: """ Повторяет ветку provider in {'gemini','gemini_image'} из prompt_combine ([ProviderCallNode.run()](agentui/pipeline/executor.py:2874)). """ built: List[Dict[str, Any]] = [] sys_texts: List[str] = [] # 1) Пред‑сегменты for _pre in (pre_segments_raw or []): try: _obj = _pre.get("obj") items = self.normalize_segment(_obj) items = self.filter_items(items) built = insert_items(built, items, _pre.get("pos")) try: sx = self.extract_system_text_from_obj(_obj, render_ctx) if isinstance(sx, str) and sx.strip(): sys_texts.append(sx.strip()) except Exception: pass except Exception: pass # 2) Основные сегменты for raw_seg in (raw_segs or []): body_seg, pos_spec = split_pos_spec(raw_seg) if body_seg == "[[PROMPT]]": items = self.filter_items(list(blocks_struct.get("contents", []) or [])) built = insert_items(built, items, pos_spec) continue m_pre = var_macro_fullmatch_re.fullmatch(body_seg) if m_pre: _p = (m_pre.group(1) or "").strip() try: if _p in pre_var_paths: continue except Exception: pass resolved = render_template_simple_fn(body_seg, render_ctx, render_ctx.get("OUT") or {}) obj = _try_json(resolved) # debug provider guess try: pg = detect_vendor_fn(obj if isinstance(obj, dict) else {}) print(f"DEBUG: prompt_combine seg provider_guess={pg} -> target=gemini pos={pos_spec}") except Exception: pass items = self.normalize_segment(obj if obj is not None else resolved) items = self.filter_items(items) built = insert_items(built, items, pos_spec) try: sx = self.extract_system_text_from_obj(obj, render_ctx) if obj is not None else None if isinstance(sx, str) and sx.strip(): sys_texts.append(sx.strip()) except Exception: pass if not built: built = self.filter_items(list(blocks_struct.get("contents", []) or [])) # Merge systemInstruction: PROMPT blocks + gathered sys_texts existing_si = blocks_struct.get("systemInstruction") parts = [] if isinstance(existing_si, dict) and isinstance(existing_si.get("parts"), list): parts = list(existing_si.get("parts") or []) for s in sys_texts: parts.append({"text": s}) new_si = {"parts": parts} if parts else existing_si return {"contents": built, "systemInstruction": new_si, "system_text": blocks_struct.get("system_text")} def prompt_fragment(self, pm_struct: Dict[str, Any], node_config: Dict[str, Any]) -> str: """ Совместимо с веткой provider in {'gemini','gemini_image'} в построении [[PROMPT]] ([ProviderCallNode.run()](agentui/pipeline/executor.py:3103)). """ parts = [] contents = pm_struct.get("contents") if contents is not None: parts.append('"contents": ' + json.dumps(contents, ensure_ascii=False)) sysi = pm_struct.get("systemInstruction") if sysi is not None: parts.append('"systemInstruction": ' + json.dumps(sysi, ensure_ascii=False)) return ", ".join(parts) class GeminiImageAdapter(GeminiAdapter): # [GeminiImageAdapter.__init__()](agentui/providers/adapters/gemini.py:332) name = "gemini_image" # Вся логика такая же, как у Gemini (generateContent), включая defaults.