Files
HadTavern/agentui/pipeline/executor.py
2025-09-07 22:33:51 +03:00

889 lines
38 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
from typing import Any, Dict, List, Optional
from urllib.parse import urljoin
import json
import re
import asyncio
from agentui.providers.http_client import build_client
# --- Templating helpers ------------------------------------------------------
_OUT_MACRO_RE = re.compile(r"\[\[\s*OUT\s*[:\s]\s*([^\]]+?)\s*\]\]", re.IGNORECASE)
_VAR_MACRO_RE = re.compile(r"\[\[\s*VAR\s*[:\s]\s*([^\]]+?)\s*\]\]", re.IGNORECASE)
# Unified prompt fragment macro (provider-specific JSON fragment)
_PROMPT_MACRO_RE = re.compile(r"\[\[\s*PROMPT\s*\]\]", re.IGNORECASE)
# Short form: [[OUT1]] -> best-effort text from node n1
_OUT_SHORT_RE = re.compile(r"\[\[\s*OUT\s*(\d+)\s*\]\]", re.IGNORECASE)
_BRACES_RE = re.compile(r"\{\{\s*([^}]+?)\s*\}\}")
def _split_path(path: str) -> List[str]:
return [p.strip() for p in str(path).split(".") if str(p).strip()]
def _get_by_path(obj: Any, path: Optional[str]) -> Any:
if path is None or path == "":
return obj
cur = obj
for seg in _split_path(path):
if isinstance(cur, dict):
if seg in cur:
cur = cur[seg]
else:
return None
elif isinstance(cur, list):
try:
idx = int(seg)
except Exception: # noqa: BLE001
return None
if 0 <= idx < len(cur):
cur = cur[idx]
else:
return None
else:
return None
return cur
def _stringify_for_template(val: Any) -> str:
if val is None:
return ""
if isinstance(val, bool):
# JSON-friendly booleans (useful when embedding into JSON-like templates)
return "true" if val else "false"
if isinstance(val, (dict, list)):
try:
return json.dumps(val, ensure_ascii=False)
except Exception: # noqa: BLE001
return str(val)
return str(val)
def _deep_find_text(obj: Any, max_nodes: int = 5000) -> Optional[str]:
"""
Best-effort поиск первого текстового значения в глубине структуры JSON.
Сначала пытаемся по ключам content/text, затем общий обход.
"""
try:
# Быстрые ветки
if isinstance(obj, str):
return obj
if isinstance(obj, dict):
c = obj.get("content")
if isinstance(c, str):
return c
t = obj.get("text")
if isinstance(t, str):
return t
parts = obj.get("parts")
if isinstance(parts, list) and parts:
for p in parts:
if isinstance(p, dict) and isinstance(p.get("text"), str):
return p.get("text")
# Общий нерекурсивный обход в ширину
queue: List[Any] = [obj]
seen = 0
while queue and seen < max_nodes:
cur = queue.pop(0)
seen += 1
if isinstance(cur, str):
return cur
if isinstance(cur, dict):
# часто встречающиеся поля
for k in ("text", "content"):
v = cur.get(k)
if isinstance(v, str):
return v
# складываем все значения
for v in cur.values():
queue.append(v)
elif isinstance(cur, list):
for it in cur:
queue.append(it)
except Exception:
pass
return None
def _best_text_from_outputs(node_out: Any) -> str:
"""
Унифицированное извлечение "текста" из выхода ноды.
Поддерживает:
- PromptTemplate: {"text": ...}
- LLMInvoke: {"response_text": ...}
- ProviderCall/RawForward: {"result": <provider_json>}, извлекаем текст для openai/gemini/claude
- Общий глубокий поиск текста, если специфичные ветки не сработали
"""
# Строка сразу
if isinstance(node_out, str):
return node_out
if not isinstance(node_out, dict):
return ""
# Явные короткие поля
if isinstance(node_out.get("response_text"), str) and node_out.get("response_text"):
return str(node_out["response_text"])
if isinstance(node_out.get("text"), str) and node_out.get("text"):
return str(node_out["text"])
res = node_out.get("result")
base = res if isinstance(res, (dict, list)) else node_out
# OpenAI
try:
if isinstance(base, dict):
ch0 = (base.get("choices") or [{}])[0]
msg = ch0.get("message") or {}
c = msg.get("content")
if isinstance(c, str):
return c
except Exception:
pass
# Gemini
try:
if isinstance(base, dict):
cand0 = (base.get("candidates") or [{}])[0]
content = cand0.get("content") or {}
parts0 = (content.get("parts") or [{}])[0]
t = parts0.get("text")
if isinstance(t, str):
return t
except Exception:
pass
# Claude
try:
if isinstance(base, dict):
blocks = base.get("content") or []
texts = [b.get("text") for b in blocks if isinstance(b, dict) and isinstance(b.get("text"), str)]
if texts:
return "\n".join(texts)
except Exception:
pass
# Общий глубокий поиск
txt = _deep_find_text(base)
return txt or ""
def _extract_out_node_id_from_ref(s: Any) -> Optional[str]:
"""
Извлекает node_id из строки с макросом [[OUT:nodeId(.path)*]].
Возвращает None, если макрос не найден.
"""
if not isinstance(s, str):
return None
m = _OUT_MACRO_RE.search(s)
if not m:
return None
body = m.group(1).strip()
node_id = body.split(".", 1)[0].strip()
return node_id or None
def _resolve_in_value(source: Any, context: Dict[str, Any], values: Dict[str, Dict[str, Any]]) -> Any:
"""
Разрешает входные связи/макросы в значение для inputs:
- Нестроковые значения возвращаются как есть
- "macro:path" &rarr; берёт значение из context по точечному пути
- "[[VAR:path]]" &rarr; берёт значение из context
- "[[OUT:nodeId(.path)*]]" &rarr; берёт из уже вычисленных выходов ноды
- "nodeId(.path)*" &rarr; ссылка на выходы ноды
- Иначе пытается взять из context по пути; если не найдено, оставляет исходную строку
"""
if not isinstance(source, str):
return source
s = source.strip()
# macro:path
if s.lower().startswith("macro:"):
path = s.split(":", 1)[1].strip()
return _get_by_path(context, path)
# [[VAR: path]]
m = _VAR_MACRO_RE.fullmatch(s)
if m:
path = m.group(1).strip()
return _get_by_path(context, path)
# [[OUT: nodeId(.path)*]]
m = _OUT_MACRO_RE.fullmatch(s)
if m:
body = m.group(1).strip()
if "." in body:
node_id, rest = body.split(".", 1)
node_val = values.get(node_id)
return _get_by_path(node_val, rest)
node_val = values.get(body)
return node_val
# "nodeId(.path)*"
if "." in s:
node_id, rest = s.split(".", 1)
if node_id in values:
return _get_by_path(values.get(node_id), rest)
if s in values:
return values.get(s)
# fallback: from context by dotted path or raw string
ctx_val = _get_by_path(context, s)
return ctx_val if ctx_val is not None else source
def render_template_simple(template: str, context: Dict[str, Any], out_map: Dict[str, Any]) -> str:
"""
Простая подстановка:
- {{ path }} — берёт из context (или {{ OUT.node.path }} для выходов)
- Поддержка фильтра по умолчанию: {{ path|default(value) }}
value может быть числом, строкой ('..'/".."), массивом/объектом в виде литерала.
- [[VAR:path]] — берёт из context
- [[OUT:nodeId(.path)*]] — берёт из out_map
Возвращает строку.
"""
if template is None:
return ""
s = str(template)
# 1) Макросы [[VAR:...]] и [[OUT:...]]
def repl_var(m: re.Match) -> str:
path = m.group(1).strip()
val = _get_by_path(context, path)
return _stringify_for_template(val)
def repl_out(m: re.Match) -> str:
body = m.group(1).strip()
if "." in body:
node_id, rest = body.split(".", 1)
node_val = out_map.get(node_id)
val = _get_by_path(node_val, rest)
else:
val = out_map.get(body)
return _stringify_for_template(val)
s = _VAR_MACRO_RE.sub(repl_var, s)
s = _OUT_MACRO_RE.sub(repl_out, s)
# [[OUT1]] → текст из ноды n1 (best-effort)
def repl_out_short(m: re.Match) -> str:
try:
num = int(m.group(1))
node_id = f"n{num}"
node_out = out_map.get(node_id)
txt = _best_text_from_outputs(node_out)
return _stringify_for_template(txt)
except Exception:
return ""
s = _OUT_SHORT_RE.sub(repl_out_short, s)
# [[PROMPT]] expands to raw provider-specific JSON fragment prepared in context["PROMPT"]
s = _PROMPT_MACRO_RE.sub(lambda _m: str(context.get("PROMPT") or ""), s)
# 2) Подстановки {{ ... }} (+ simple default filter)
def repl_braces(m: re.Match) -> str:
expr = m.group(1).strip()
def eval_path(p: str) -> Any:
p = p.strip()
if p.startswith("OUT."):
body = p[4:]
if "." in body:
node_id, rest = body.split(".", 1)
node_val = out_map.get(node_id)
return _get_by_path(node_val, rest)
return out_map.get(body)
return _get_by_path(context, p)
default_match = re.match(r"([^|]+)\|\s*default\((.*)\)\s*$", expr)
if default_match:
base_path = default_match.group(1).strip()
fallback_raw = default_match.group(2).strip()
# Снимем внешние кавычки, если это строковый литерал
if len(fallback_raw) >= 2 and ((fallback_raw[0] == "'" and fallback_raw[-1] == "'") or (fallback_raw[0] == '"' and fallback_raw[-1] == '"')):
fallback_val: Any = fallback_raw[1:-1]
else:
# Иначе оставляем как есть (числа/массивы/объекты — литералами)
fallback_val = fallback_raw
raw_val = eval_path(base_path)
val = raw_val if raw_val not in (None, "") else fallback_val
else:
val = eval_path(expr)
return _stringify_for_template(val)
s = _BRACES_RE.sub(repl_braces, s)
return s
def detect_vendor(payload: Dict[str, Any]) -> str:
if not isinstance(payload, dict):
return "unknown"
if "anthropic_version" in payload or payload.get("provider") == "anthropic":
return "claude"
# Gemini typical payload keys
if "contents" in payload or "generationConfig" in payload:
return "gemini"
# OpenAI typical keys
if "messages" in payload or "model" in payload:
return "openai"
return "unknown"
class ExecutionError(Exception):
pass
class Node:
type_name: str = "Base"
def __init__(self, node_id: str, config: Optional[Dict[str, Any]] = None) -> None:
self.node_id = node_id
self.config = config or {}
async def run(self, inputs: Dict[str, Any], context: Dict[str, Any]) -> Dict[str, Any]: # noqa: D401
"""Execute node with inputs and context. Return dict of outputs."""
raise NotImplementedError
# Регистрация поддерживаемых типов нод (минимальный набор)
NODE_REGISTRY: Dict[str, Any] = {}
class PipelineExecutor:
def __init__(self, pipeline: Dict[str, Any]) -> None:
self.pipeline = pipeline
self.nodes_by_id: Dict[str, Node] = {}
for n in pipeline.get("nodes", []):
node_cls = NODE_REGISTRY.get(n.get("type"))
if not node_cls:
raise ExecutionError(f"Unknown node type: {n.get('type')}")
self.nodes_by_id[n["id"]] = node_cls(n["id"], n.get("config", {}))
async def run(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Исполнитель пайплайна с динамическим порядком на основе зависимостей графа.
Новый режим: волновое (level-by-level) исполнение с параллелизмом и барьером.
Все узлы «готовой волны» стартуют параллельно, ждём всех, затем открывается следующая волна.
Ограничение параллелизма берётся из pipeline.parallel_limit (по умолчанию 8).
Политика ошибок: fail-fast — при исключении любой задачи волны прерываем пайплайн.
"""
nodes: List[Dict[str, Any]] = list(self.pipeline.get("nodes", []))
id_set = set(self.nodes_by_id.keys())
# Собираем зависимости: node_id -> set(parent_ids), и обратные связи dependents
deps_map: Dict[str, set] = {n["id"]: set() for n in nodes}
dependents: Dict[str, set] = {n["id"]: set() for n in nodes}
for n in nodes:
nid = n["id"]
for _, source in (n.get("in") or {}).items():
if not isinstance(source, str):
# Нестрочные значения считаем константами — зависимостей нет
continue
if source.startswith("macro:"):
# Макросы берутся из контекста, без зависимостей
continue
# [[VAR:...]] — макрос из контекста, зависимостей нет
if re.fullmatch(r"\[\[\s*VAR\s*[:\s]\s*[^\]]+\s*\]\]", source.strip()):
continue
# [[OUT:nodeId(.key)*]] — зависимость от указанной ноды
out_ref_node = _extract_out_node_id_from_ref(source)
if out_ref_node and out_ref_node in id_set:
deps_map[nid].add(out_ref_node)
dependents[out_ref_node].add(nid)
continue
# Ссылки вида "node.outKey" или "node"
src_id = source.split(".", 1)[0] if "." in source else source
if src_id in id_set:
deps_map[nid].add(src_id)
dependents[src_id].add(nid)
# Входящие степени и первая волна
in_degree: Dict[str, int] = {nid: len(deps) for nid, deps in deps_map.items()}
ready: List[str] = [nid for nid, deg in in_degree.items() if deg == 0]
processed: List[str] = []
values: Dict[str, Dict[str, Any]] = {}
last_result: Dict[str, Any] = {}
node_def_by_id: Dict[str, Dict[str, Any]] = {n["id"]: n for n in nodes}
# Параметры параллелизма
try:
parallel_limit = int(self.pipeline.get("parallel_limit", 8))
except Exception:
parallel_limit = 8
if parallel_limit <= 0:
parallel_limit = 1
# Вспомогательная корутина исполнения одной ноды со снапшотом OUT
async def exec_one(node_id: str, values_snapshot: Dict[str, Any]) -> tuple[str, Dict[str, Any]]:
ndef = node_def_by_id.get(node_id)
if not ndef:
raise ExecutionError(f"Node definition not found: {node_id}")
node = self.nodes_by_id[node_id]
# Снимок контекста и OUT на момент старта волны
ctx = dict(context)
ctx["OUT"] = values_snapshot
# Разрешаем inputs для ноды
inputs: Dict[str, Any] = {}
for name, source in (ndef.get("in") or {}).items():
inputs[name] = _resolve_in_value(source, ctx, values_snapshot)
out = await node.run(inputs, ctx)
return node_id, out
# Волновое исполнение
while ready:
wave_nodes = list(ready)
ready = [] # будет заполнено после завершения волны
wave_results: Dict[str, Dict[str, Any]] = {}
# Один общий снапшот OUT для всей волны (барьер — узлы волны не видят результаты друг друга)
values_snapshot = dict(values)
# Чанковый запуск с лимитом parallel_limit
for i in range(0, len(wave_nodes), parallel_limit):
chunk = wave_nodes[i : i + parallel_limit]
# fail-fast: при исключении любой задачи gather бросит и отменит остальные
results = await asyncio.gather(
*(exec_one(nid, values_snapshot) for nid in chunk),
return_exceptions=False,
)
# Коммитим результаты чанка в локальное хранилище волны
for nid, out in results:
wave_results[nid] = out
last_result = out # обновляем на каждом успешном результате
# После завершения волны — коммитим все её результаты в общие values
values.update(wave_results)
processed.extend(wave_nodes)
# Обновляем входящие степени для зависимых и формируем следующую волну
for done in wave_nodes:
for child in dependents.get(done, ()):
in_degree[child] -= 1
next_ready = [nid for nid, deg in in_degree.items() if deg == 0 and nid not in processed and nid not in wave_nodes]
# Исключаем уже учтённые и добавляем только те, которые действительно готовы
ready = next_ready
# Проверка на циклы/недостижимые ноды
if len(processed) != len(nodes):
remaining = [n["id"] for n in nodes if n["id"] not in processed]
raise ExecutionError(f"Cycle detected or unresolved dependencies among nodes: {remaining}")
return last_result
class ProviderCallNode(Node):
type_name = "ProviderCall"
# --- Prompt Manager helpers -------------------------------------------------
def _get_blocks(self) -> List[Dict[str, Any]]:
"""Return normalized list of prompt blocks from config."""
raw = self.config.get("blocks") or self.config.get("prompt_blocks") or []
if not isinstance(raw, list):
return []
norm: List[Dict[str, Any]] = []
for i, b in enumerate(raw):
if not isinstance(b, dict):
continue
role = str(b.get("role", "user")).lower().strip()
if role not in {"system", "user", "assistant", "tool"}:
role = "user"
# order fallback: keep original index if not provided/correct
try:
order = int(b.get("order")) if b.get("order") is not None else i
except Exception: # noqa: BLE001
order = i
norm.append(
{
"id": b.get("id") or f"b{i}",
"name": b.get("name") or f"Block {i+1}",
"role": role,
"prompt": b.get("prompt") or "",
"enabled": bool(b.get("enabled", True)),
"order": order,
}
)
return norm
def _render_blocks_to_unified(self, context: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Filter+sort+render blocks to unified messages:
[{role, content, name?}]
"""
out_map = context.get("OUT") or {}
blocks = [b for b in self._get_blocks() if b.get("enabled", True)]
blocks.sort(key=lambda x: x.get("order", 0))
messages: List[Dict[str, Any]] = []
for b in blocks:
content = render_template_simple(str(b.get("prompt") or ""), context, out_map)
msg = {"role": b["role"], "content": content}
if b.get("name"):
msg["name"] = b["name"]
messages.append(msg)
return messages
def _messages_to_payload(self, provider: str, messages: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
"""Convert unified messages to provider-specific request payload."""
params = context.get("params") or {}
model = context.get("model") or ""
if provider == "openai":
payload: Dict[str, Any] = {
"model": model,
"messages": [
{k: v for k, v in {"role": m["role"], "content": m["content"], "name": m.get("name")}.items() if v is not None}
for m in messages
],
"temperature": params.get("temperature", 0.7),
}
if params.get("max_tokens") is not None:
payload["max_tokens"] = params.get("max_tokens")
if params.get("top_p") is not None:
payload["top_p"] = params.get("top_p")
if params.get("stop") is not None:
payload["stop"] = params.get("stop")
return payload
if provider == "gemini":
sys_text = "\n\n".join([m["content"] for m in messages if m["role"] == "system"]).strip()
contents = []
for m in messages:
if m["role"] == "system":
continue
role = "model" if m["role"] == "assistant" else "user"
contents.append({"role": role, "parts": [{"text": m["content"]}]})
gen_cfg: Dict[str, Any] = {}
if params.get("temperature") is not None:
gen_cfg["temperature"] = params.get("temperature")
if params.get("max_tokens") is not None:
gen_cfg["maxOutputTokens"] = params.get("max_tokens")
if params.get("top_p") is not None:
gen_cfg["topP"] = params.get("top_p")
if params.get("stop") is not None:
gen_cfg["stopSequences"] = params.get("stop")
payload = {"model": model, "contents": contents}
if sys_text:
payload["systemInstruction"] = {"parts": [{"text": sys_text}]}
if gen_cfg:
payload["generationConfig"] = gen_cfg
return payload
if provider == "claude":
sys_text = "\n\n".join([m["content"] for m in messages if m["role"] == "system"]).strip()
msgs = []
for m in messages:
if m["role"] == "system":
continue
role = m["role"] if m["role"] in {"user", "assistant"} else "user"
msgs.append({"role": role, "content": [{"type": "text", "text": m["content"]}]})
payload: Dict[str, Any] = {
"model": model,
"messages": msgs,
"anthropic_version": context.get("anthropic_version", "2023-06-01"),
}
if sys_text:
payload["system"] = sys_text
if params.get("temperature") is not None:
payload["temperature"] = params.get("temperature")
if params.get("max_tokens") is not None:
payload["max_tokens"] = params.get("max_tokens")
if params.get("top_p") is not None:
payload["top_p"] = params.get("top_p")
if params.get("stop") is not None:
payload["stop"] = params.get("stop")
return payload
return {}
def _blocks_struct_for_template(self, provider: str, messages: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
"""
Сформировать структуру для вставки в шаблон (template) из Prompt Blocks.
Возвращает provider-специфичные ключи, которые можно вставлять в JSON:
- openai: { "messages": [...] , "system_text": "..." }
- gemini: { "contents": [...], "systemInstruction": {...}, "system_text": "..." }
- claude: { "system_text": "...", "system": "...", "messages": [...] }
"""
provider = (provider or "openai").lower()
# Гарантируем список
msgs = messages or []
if provider == "openai":
# Уже в формате {"role","content","name?"}
sys_text = "\n\n".join([m["content"] for m in msgs if m.get("role") == "system"]).strip()
# Вставляем как есть (editor будет встраивать JSON массива без кавычек)
return {
"messages": [
{k: v for k, v in {"role": m["role"], "content": m.get("content"), "name": m.get("name")}.items() if v is not None}
for m in msgs
],
"system_text": sys_text,
}
if provider == "gemini":
sys_text = "\n\n".join([m["content"] for m in msgs if m.get("role") == "system"]).strip()
contents = []
for m in msgs:
if m.get("role") == "system":
continue
role = "model" if m.get("role") == "assistant" else "user"
contents.append({"role": role, "parts": [{"text": str(m.get("content") or "")}]})
sys_instr = {"parts": [{"text": sys_text}]} if sys_text else {} # всегда корректный JSON-объект
return {
"contents": contents,
"systemInstruction": sys_instr,
"system_text": sys_text,
}
if provider == "claude":
sys_text = "\n\n".join([m["content"] for m in msgs if m.get("role") == "system"]).strip()
out_msgs = []
for m in msgs:
if m.get("role") == "system":
continue
role = m.get("role")
role = role if role in {"user", "assistant"} else "user"
out_msgs.append({"role": role, "content": [{"type": "text", "text": str(m.get("content") or "")}]})
return {
"system_text": sys_text,
"system": sys_text, # удобно для шаблона: "system": "{{ pm.system_text }}"
"messages": out_msgs,
}
# По умолчанию ничего, но это валидный JSON
return {"messages": []}
async def run(self, inputs: Dict[str, Any], context: Dict[str, Any]) -> Dict[str, Any]:
provider = (self.config.get("provider") or "openai").lower()
# Support provider-specific configs stored in UI as provider_configs.{provider}
prov_cfg: Dict[str, Any] = {}
try:
cfgs = self.config.get("provider_configs") or {}
if isinstance(cfgs, dict):
prov_cfg = cfgs.get(provider) or {}
except Exception: # noqa: BLE001
prov_cfg = {}
base_url = prov_cfg.get("base_url") or self.config.get("base_url")
if not base_url:
raise ExecutionError(f"Node {self.node_id} ({self.type_name}) requires 'base_url' in config")
if not str(base_url).startswith(("http://", "https://")):
base_url = "http://" + str(base_url)
endpoint_tmpl: str = prov_cfg.get("endpoint") or self.config.get("endpoint") or ""
template: str = prov_cfg.get("template") or self.config.get("template") or "{}"
headers_json: str = prov_cfg.get("headers") or self.config.get("headers") or "{}"
# Default endpoints if not set
if not endpoint_tmpl:
if provider == "openai":
endpoint_tmpl = "/v1/chat/completions"
elif provider == "gemini":
endpoint_tmpl = "/v1beta/models/{{ model }}:generateContent"
elif provider == "claude":
endpoint_tmpl = "/v1/messages"
# Подготовим Prompt Blocks + pm-структуру для шаблона
unified_msgs = self._render_blocks_to_unified(context)
pm_struct = self._blocks_struct_for_template(provider, unified_msgs, context)
# Расширяем контекст для рендера шаблонов
render_ctx = dict(context)
render_ctx["pm"] = pm_struct
# Единый JSON-фрагмент PROMPT для шаблонов: [[PROMPT]]
prompt_fragment = ""
try:
if provider == "openai":
prompt_fragment = '"messages": ' + json.dumps(pm_struct.get("messages", []), ensure_ascii=False)
elif provider == "gemini":
parts = []
contents = pm_struct.get("contents")
if contents is not None:
parts.append('"contents": ' + json.dumps(contents, ensure_ascii=False))
sysi = pm_struct.get("systemInstruction")
# даже если пустой объект {}, это валидно
if sysi is not None:
parts.append('"systemInstruction": ' + json.dumps(sysi, ensure_ascii=False))
prompt_fragment = ", ".join(parts)
elif provider == "claude":
parts = []
sys_text = pm_struct.get("system_text") or pm_struct.get("system")
if sys_text is not None:
parts.append('"system": ' + json.dumps(sys_text, ensure_ascii=False))
msgs = pm_struct.get("messages")
if msgs is not None:
parts.append('"messages": ' + json.dumps(msgs, ensure_ascii=False))
prompt_fragment = ", ".join(parts)
except Exception: # noqa: BLE001
prompt_fragment = ""
render_ctx["PROMPT"] = prompt_fragment
# Render helper с поддержкой [[VAR]], [[OUT]] и {{ ... }}
def render(s: str) -> str:
return render_template_simple(s or "", render_ctx, render_ctx.get("OUT") or {})
# Рендер endpoint с макросами/шаблонами
endpoint = render(endpoint_tmpl)
# Формируем тело ТОЛЬКО из template/[[PROMPT]] (без сырого payload/входов)
try:
rendered = render(template)
payload = json.loads(rendered)
except Exception:
# Fallback: используем генерацию из Prompt Blocks в формате провайдера
payload = self._messages_to_payload(provider, unified_msgs, context)
# Заголовки — полностью из редактируемого JSON с макросами
try:
headers_src = render(headers_json) if headers_json else "{}"
headers = json.loads(headers_src) if headers_src else {}
if not isinstance(headers, dict):
raise ValueError("headers must be a JSON object")
except Exception as exc: # noqa: BLE001
raise ExecutionError(f"ProviderCall headers invalid JSON: {exc}")
# Итоговый URL
if not base_url.startswith(("http://", "https://")):
base_url = "http://" + base_url
url = endpoint if endpoint.startswith("http") else urljoin(base_url.rstrip('/') + '/', endpoint.lstrip('/'))
# Debug logs to validate config selection and payload
try:
payload_preview = ""
try:
payload_preview = json.dumps(payload, ensure_ascii=False)[:400]
except Exception:
payload_preview = str(payload)[:400]
print(f"DEBUG: ProviderCallNode provider={provider} URL={url}")
print(f"DEBUG: ProviderCallNode headers_keys={list(headers.keys())}")
print(f"DEBUG: ProviderCallNode payload_preview={payload_preview}")
except Exception:
pass
async with build_client() as client:
resp = await client.post(url, json=payload, headers={"Content-Type": "application/json", **headers})
resp.raise_for_status()
data = resp.json()
# Извлекаем текст best-effort
text = None
if provider == "openai":
try:
text = data.get("choices", [{}])[0].get("message", {}).get("content")
except Exception: # noqa: BLE001
text = None
elif provider == "gemini":
try:
text = data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text")
except Exception: # noqa: BLE001
text = None
elif provider == "claude":
try:
blocks = data.get("content") or []
texts = [b.get("text") for b in blocks if isinstance(b, dict) and b.get("type") == "text"]
text = "\n".join([t for t in texts if isinstance(t, str)])
except Exception: # noqa: BLE001
text = None
return {"result": data, "response_text": text or ""}
class RawForwardNode(Node):
type_name = "RawForward"
async def run(self, inputs: Dict[str, Any], context: Dict[str, Any]) -> Dict[str, Any]:
incoming = context.get("incoming", {})
raw_payload = incoming.get("json")
base_url: Optional[str] = self.config.get("base_url")
override_path: Optional[str] = self.config.get("override_path")
# Разрешаем макросы в конфиге RawForward (base_url, override_path)
out_map_for_macros = context.get("OUT") or {}
if base_url:
base_url = render_template_simple(str(base_url), context, out_map_for_macros)
if override_path:
override_path = render_template_simple(str(override_path), context, out_map_for_macros)
# Если base_url не указан, включаем автодетекцию
if not base_url:
vendor = detect_vendor(raw_payload)
if vendor == "openai":
base_url = "https://api.openai.com"
elif vendor == "claude":
base_url = "https://api.anthropic.com"
elif vendor == "gemini":
base_url = "https://generativelanguage.googleapis.com"
else:
raise ExecutionError(f"Node {self.node_id} ({self.type_name}): 'base_url' is not configured and vendor could not be detected.")
# Гарантируем наличие схемы у base_url
if not base_url.startswith(("http://", "https://")):
base_url = "http://" + base_url
path = override_path or incoming.get("path") or "/"
query = incoming.get("query")
if query:
path_with_qs = f"{path}?{query}"
else:
path_with_qs = path
url = urljoin(base_url.rstrip("/") + "/", path_with_qs.lstrip("/"))
passthrough_headers: bool = bool(self.config.get("passthrough_headers", True))
extra_headers_json: str = self.config.get("extra_headers") or "{}"
# Макросы в extra_headers
try:
extra_headers_src = render_template_simple(extra_headers_json, context, out_map_for_macros) if extra_headers_json else "{}"
extra_headers = json.loads(extra_headers_src) if extra_headers_src else {}
if not isinstance(extra_headers, dict):
raise ValueError("extra_headers must be an object")
except Exception as exc: # noqa: BLE001
raise ExecutionError(f"RawForward extra_headers invalid JSON: {exc}")
headers: Dict[str, str] = {}
if passthrough_headers:
inc_headers = incoming.get("headers") or {}
# Копируем все заголовки, кроме Host и Content-Length
for k, v in inc_headers.items():
if k.lower() not in ['host', 'content-length']:
headers[k] = v
# Убедимся, что Content-Type на месте, если его не было
if 'content-type' not in {k.lower() for k in headers}:
headers['Content-Type'] = 'application/json'
headers.update(extra_headers)
print(f"DEBUG: RawForwardNode sending request to URL: {url}")
print(f"DEBUG: RawForwardNode sending with HEADERS: {headers}")
async with build_client() as client:
resp = await client.post(url, json=raw_payload, headers=headers)
# Логируем ответ от целевого API для диагностики
try:
data = resp.json()
print(f"DEBUG: RawForwardNode received response. Status: {resp.status_code}, Body: {data}")
except Exception:
data = {"error": "Failed to decode JSON from upstream", "text": resp.text}
print(f"DEBUG: RawForwardNode received non-JSON response. Status: {resp.status_code}, Text: {resp.text}")
# Не выбрасываем исключение, а просто проксируем ответ
# resp.raise_for_status()
return {"result": data}
NODE_REGISTRY.update({
ProviderCallNode.type_name: ProviderCallNode,
RawForwardNode.type_name: RawForwardNode,
})