sync: UI animations, select styling, TLS verify flag via proxy second line, brand spacing
@@ -1,48 +0,0 @@
|
||||
{
|
||||
"VAL": 2,
|
||||
"snapshot": {
|
||||
"incoming": null,
|
||||
"params": {},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"vars": {
|
||||
"VAL": 2
|
||||
}
|
||||
},
|
||||
"n2": {
|
||||
"result": {
|
||||
"id": "ret_mock_123",
|
||||
"object": "chat.completion",
|
||||
"model": "gpt-x",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "2"
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 1,
|
||||
"total_tokens": 0
|
||||
}
|
||||
},
|
||||
"response_text": "2"
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "",
|
||||
"n2": "2"
|
||||
},
|
||||
"LAST_NODE": "n2",
|
||||
"OUT1": "",
|
||||
"OUT2": "2",
|
||||
"EXEC_TRACE": "n1(SetVars) -> n2(Return)"
|
||||
}
|
||||
}
|
||||
@@ -1,48 +0,0 @@
|
||||
{
|
||||
"TXT": "A | B | C",
|
||||
"snapshot": {
|
||||
"incoming": null,
|
||||
"params": {},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"vars": {
|
||||
"TXT": "A | B | C"
|
||||
}
|
||||
},
|
||||
"n2": {
|
||||
"result": {
|
||||
"id": "ret_mock_123",
|
||||
"object": "chat.completion",
|
||||
"model": "gpt-x",
|
||||
"choices": [
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "A | B | C"
|
||||
},
|
||||
"finish_reason": "stop"
|
||||
}
|
||||
],
|
||||
"usage": {
|
||||
"prompt_tokens": 0,
|
||||
"completion_tokens": 5,
|
||||
"total_tokens": 0
|
||||
}
|
||||
},
|
||||
"response_text": "A | B | C"
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "A | B | C",
|
||||
"n2": "A | B | C"
|
||||
},
|
||||
"LAST_NODE": "n2",
|
||||
"OUT1": "A | B | C",
|
||||
"OUT2": "A | B | C",
|
||||
"EXEC_TRACE": "n1(SetVars) -> n2(Return)"
|
||||
}
|
||||
}
|
||||
40
.agentui/vars/p_pc_while_ignore.json
Normal file
@@ -0,0 +1,40 @@
|
||||
{
|
||||
"WAS_ERROR__n2": true,
|
||||
"CYCLEINDEX__n2": 2,
|
||||
"snapshot": {
|
||||
"incoming": {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {
|
||||
"x": "X-HEADER"
|
||||
},
|
||||
"json": {}
|
||||
},
|
||||
"params": {
|
||||
"temperature": 0.25
|
||||
},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n2": {
|
||||
"result": {
|
||||
"error": "Node n2 (ProviderCall) requires 'base_url' in config"
|
||||
},
|
||||
"response_text": "",
|
||||
"vars": {
|
||||
"WAS_ERROR__n2": true,
|
||||
"CYCLEINDEX__n2": 2
|
||||
}
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n2": "Node n2 (ProviderCall) requires 'base_url' in config"
|
||||
},
|
||||
"LAST_NODE": "n2",
|
||||
"OUT2": "Node n2 (ProviderCall) requires 'base_url' in config",
|
||||
"EXEC_TRACE": "n2(ProviderCall)"
|
||||
}
|
||||
}
|
||||
48
.agentui/vars/p_pc_while_out_macro.json
Normal file
@@ -0,0 +1,48 @@
|
||||
{
|
||||
"MSG": "abc123xyz",
|
||||
"WAS_ERROR__n2": true,
|
||||
"CYCLEINDEX__n2": 1,
|
||||
"snapshot": {
|
||||
"incoming": {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {
|
||||
"x": "X-HEADER"
|
||||
},
|
||||
"json": {}
|
||||
},
|
||||
"params": {
|
||||
"temperature": 0.25
|
||||
},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"vars": {
|
||||
"MSG": "abc123xyz"
|
||||
}
|
||||
},
|
||||
"n2": {
|
||||
"result": {
|
||||
"error": "Node n2 (ProviderCall) requires 'base_url' in config"
|
||||
},
|
||||
"response_text": "",
|
||||
"vars": {
|
||||
"WAS_ERROR__n2": true,
|
||||
"CYCLEINDEX__n2": 1
|
||||
}
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "abc123xyz",
|
||||
"n2": "Node n2 (ProviderCall) requires 'base_url' in config"
|
||||
},
|
||||
"LAST_NODE": "n2",
|
||||
"OUT1": "abc123xyz",
|
||||
"OUT2": "Node n2 (ProviderCall) requires 'base_url' in config",
|
||||
"EXEC_TRACE": "n1(SetVars) -> n2(ProviderCall)"
|
||||
}
|
||||
}
|
||||
105
.agentui/vars/p_prompt_combine_claude.json
Normal file
@@ -0,0 +1,105 @@
|
||||
{
|
||||
"snapshot": {
|
||||
"incoming": {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {
|
||||
"x": "X-HEADER"
|
||||
},
|
||||
"json": {
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Системный-тест CLAUDE"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Прив"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Привет!"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"params": {
|
||||
"temperature": 0.25
|
||||
},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"result": {
|
||||
"echo": {
|
||||
"url": "http://mock.local/v1/messages",
|
||||
"headers": {
|
||||
"Content-Type": "application/json"
|
||||
},
|
||||
"payload": {
|
||||
"model": "gpt-x",
|
||||
"system": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Ты — Narrator-chan."
|
||||
},
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Системный-тест CLAUDE"
|
||||
}
|
||||
],
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Системный-тест CLAUDE"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Прив"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Привет!"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "как лела"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"response_text": "http://mock.local/v1/messages"
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "http://mock.local/v1/messages"
|
||||
},
|
||||
"LAST_NODE": "n1",
|
||||
"OUT1": "http://mock.local/v1/messages",
|
||||
"EXEC_TRACE": "n1(ProviderCall)"
|
||||
}
|
||||
}
|
||||
101
.agentui/vars/p_prompt_combine_gemini.json
Normal file
@@ -0,0 +1,101 @@
|
||||
{
|
||||
"snapshot": {
|
||||
"incoming": {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {
|
||||
"x": "X-HEADER"
|
||||
},
|
||||
"json": {
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Системный-тест из входящего"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Its just me.."
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Reply from model"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"params": {
|
||||
"temperature": 0.25
|
||||
},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"result": {
|
||||
"echo": {
|
||||
"url": "http://mock.local/v1beta/models/gpt-x:generateContent",
|
||||
"headers": {
|
||||
"Content-Type": "application/json"
|
||||
},
|
||||
"payload": {
|
||||
"model": "gpt-x",
|
||||
"contents": [
|
||||
{
|
||||
"role": "user",
|
||||
"parts": [
|
||||
{
|
||||
"text": "Системный-тест из входящего"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"parts": [
|
||||
{
|
||||
"text": "Its just me.."
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "model",
|
||||
"parts": [
|
||||
{
|
||||
"text": "Reply from model"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"parts": [
|
||||
{
|
||||
"text": "как лела"
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"systemInstruction": {
|
||||
"parts": [
|
||||
{
|
||||
"text": "Ты — Narrator-chan."
|
||||
},
|
||||
{
|
||||
"text": "Системный-тест из входящего"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"response_text": "http://mock.local/v1beta/models/gpt-x:generateContent"
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "http://mock.local/v1beta/models/gpt-x:generateContent"
|
||||
},
|
||||
"LAST_NODE": "n1",
|
||||
"OUT1": "http://mock.local/v1beta/models/gpt-x:generateContent",
|
||||
"EXEC_TRACE": "n1(ProviderCall)"
|
||||
}
|
||||
}
|
||||
79
.agentui/vars/p_prompt_combine_openai.json
Normal file
@@ -0,0 +1,79 @@
|
||||
{
|
||||
"snapshot": {
|
||||
"incoming": {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {
|
||||
"x": "X-HEADER"
|
||||
},
|
||||
"json": {
|
||||
"contents": [
|
||||
{
|
||||
"role": "user",
|
||||
"parts": [
|
||||
{
|
||||
"text": "A"
|
||||
}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "model",
|
||||
"parts": [
|
||||
{
|
||||
"text": "B"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"params": {
|
||||
"temperature": 0.25
|
||||
},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "gemini",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"result": {
|
||||
"echo": {
|
||||
"url": "http://mock.local/v1/chat/completions",
|
||||
"headers": {
|
||||
"Content-Type": "application/json"
|
||||
},
|
||||
"payload": {
|
||||
"model": "gpt-x",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "Ты — Narrator-chan."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "как лела"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "A"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "B"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
"response_text": "http://mock.local/v1/chat/completions"
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "http://mock.local/v1/chat/completions"
|
||||
},
|
||||
"LAST_NODE": "n1",
|
||||
"OUT1": "http://mock.local/v1/chat/completions",
|
||||
"EXEC_TRACE": "n1(ProviderCall)"
|
||||
}
|
||||
}
|
||||
40
.agentui/vars/p_rf_while_ignore.json
Normal file
@@ -0,0 +1,40 @@
|
||||
{
|
||||
"WAS_ERROR__n1": true,
|
||||
"CYCLEINDEX__n1": 1,
|
||||
"snapshot": {
|
||||
"incoming": {
|
||||
"method": "POST",
|
||||
"url": "http://example.local/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {
|
||||
"content-type": "text/plain"
|
||||
},
|
||||
"json": "raw-plain-body-simulated"
|
||||
},
|
||||
"params": {
|
||||
"temperature": 0.25
|
||||
},
|
||||
"model": "gpt-x",
|
||||
"vendor_format": "openai",
|
||||
"system": "",
|
||||
"OUT": {
|
||||
"n1": {
|
||||
"result": {
|
||||
"error": "Node n1 (RawForward): 'base_url' is not configured and vendor could not be detected."
|
||||
},
|
||||
"response_text": "",
|
||||
"vars": {
|
||||
"WAS_ERROR__n1": true,
|
||||
"CYCLEINDEX__n1": 1
|
||||
}
|
||||
}
|
||||
},
|
||||
"OUT_TEXT": {
|
||||
"n1": "Node n1 (RawForward): 'base_url' is not configured and vendor could not be detected."
|
||||
},
|
||||
"LAST_NODE": "n1",
|
||||
"OUT1": "Node n1 (RawForward): 'base_url' is not configured and vendor could not be detected.",
|
||||
"EXEC_TRACE": "n1(RawForward)"
|
||||
}
|
||||
}
|
||||
@@ -29,13 +29,29 @@
|
||||
|
||||
Быстрый старт
|
||||
|
||||
Вариант А (Windows):
|
||||
- Откройте файл [`run_agentui.bat`](run_agentui.bat) — он сам поставит зависимости и откроет редактор.
|
||||
Вариант A (Windows, авто‑настройка .venv):
|
||||
- Запустите [run_agentui.bat](run_agentui.bat) двойным кликом или из консоли.
|
||||
- Скрипт сам:
|
||||
- создаст локальное окружение .venv в каталоге проекта;
|
||||
- обновит pip;
|
||||
- установит зависимости из [requirements.txt](requirements.txt);
|
||||
- поднимет сервер и откроет редактор в браузере.
|
||||
- Переменные окружения (опционально перед запуском): HOST=127.0.0.1 PORT=7860
|
||||
|
||||
Вариант Б (любой ОС):
|
||||
- Установите Python 3.10+ и выполните:
|
||||
- pip install -r [`requirements.txt`](requirements.txt)
|
||||
- python -m uvicorn agentui.api.server:app --host 127.0.0.1 --port 7860
|
||||
Вариант B (Linux/macOS, авто‑настройка .venv):
|
||||
- Сделайте исполняемым и запустите:
|
||||
- chmod +x [run_agentui.sh](run_agentui.sh)
|
||||
- ./run_agentui.sh
|
||||
- Скрипт сделает то же самое: .venv + установка зависимостей + старт сервера.
|
||||
|
||||
Вариант C (ручной запуск, если хотите контролировать шаги):
|
||||
- Установите Python 3.10+.
|
||||
- Создайте и активируйте .venv:
|
||||
- Windows (cmd): py -m venv .venv && .\.venv\Scripts\activate
|
||||
- Linux/macOS (bash): python3 -m venv .venv && source .venv/bin/activate
|
||||
- Установите зависимости и стартуйте сервер:
|
||||
- pip install -r [requirements.txt](requirements.txt)
|
||||
- python -m uvicorn agentui.api.server:app --host 127.0.0.1 --port 7860
|
||||
|
||||
Откройте в браузере:
|
||||
- http://127.0.0.1:7860/ui/editor.html — визуальный редактор узлов
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
from fastapi import FastAPI, Request, HTTPException, Query, Header
|
||||
import logging
|
||||
from logging.handlers import RotatingFileHandler
|
||||
import json
|
||||
from urllib.parse import urlsplit, urlunsplit, parse_qsl, urlencode, unquote
|
||||
from fastapi.responses import JSONResponse, HTMLResponse, StreamingResponse
|
||||
from fastapi.responses import JSONResponse, HTMLResponse, StreamingResponse, FileResponse
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
import os
|
||||
import hashlib
|
||||
import time
|
||||
from pydantic import BaseModel, Field
|
||||
from typing import Any, Dict, List, Literal, Optional
|
||||
from agentui.pipeline.executor import PipelineExecutor
|
||||
@@ -12,6 +14,7 @@ from agentui.pipeline.defaults import default_pipeline
|
||||
from agentui.pipeline.storage import load_pipeline, save_pipeline, list_presets, load_preset, save_preset, load_var_store
|
||||
from agentui.common.vendors import detect_vendor
|
||||
from agentui.common.cancel import request_cancel, clear_cancel, is_cancelled
|
||||
from agentui.pipeline.templating import render_template_simple
|
||||
|
||||
|
||||
class UnifiedParams(BaseModel):
|
||||
@@ -175,35 +178,7 @@ def build_macro_context(u: UnifiedChatRequest, incoming: Optional[Dict[str, Any]
|
||||
}
|
||||
|
||||
|
||||
def jinja_render(template: str, ctx: Dict[str, Any]) -> str:
|
||||
# Чтобы не тянуть Jinja2 в MVP: простая {{ key.path }} замена
|
||||
def get_value(path: str, data: Dict[str, Any]) -> Any:
|
||||
cur: Any = data
|
||||
for part in path.split('.'):
|
||||
if isinstance(cur, dict):
|
||||
cur = cur.get(part, "")
|
||||
else:
|
||||
return ""
|
||||
return cur if isinstance(cur, (str, int, float)) else ""
|
||||
|
||||
out = template
|
||||
import re
|
||||
for m in re.findall(r"\{\{\s*([^}]+)\s*\}\}", template):
|
||||
expr = m.strip()
|
||||
# support simple default filter: {{ path|default(value) }}
|
||||
default_match = re.match(r"([^|]+)\|\s*default\((.*)\)", expr)
|
||||
if default_match:
|
||||
path = default_match.group(1).strip()
|
||||
fallback = default_match.group(2).strip()
|
||||
# strip quotes if present
|
||||
if (fallback.startswith("\"") and fallback.endswith("\"")) or (fallback.startswith("'") and fallback.endswith("'")):
|
||||
fallback = fallback[1:-1]
|
||||
raw_val = get_value(path, ctx)
|
||||
val = str(raw_val) if raw_val not in (None, "") else str(fallback)
|
||||
else:
|
||||
val = str(get_value(expr, ctx))
|
||||
out = out.replace("{{ "+m+" }}", val).replace("{{"+m+"}}", val)
|
||||
return out
|
||||
# jinja_render removed (duplication). Use agentui.pipeline.templating.render_template_simple instead.
|
||||
|
||||
|
||||
async def execute_pipeline_echo(u: UnifiedChatRequest) -> Dict[str, Any]:
|
||||
@@ -211,7 +186,7 @@ async def execute_pipeline_echo(u: UnifiedChatRequest) -> Dict[str, Any]:
|
||||
macro_ctx = build_macro_context(u)
|
||||
# PromptTemplate
|
||||
prompt_template = "System: {{ system }}\nUser: {{ chat.last_user }}"
|
||||
rendered_prompt = jinja_render(prompt_template, macro_ctx)
|
||||
rendered_prompt = render_template_simple(prompt_template, macro_ctx, {})
|
||||
# LLMInvoke (echo, т.к. без реального провайдера в MVP)
|
||||
llm_response_text = f"[echo by {u.model}]\n" + rendered_prompt
|
||||
# Дополняем эхо человекочитаемым трейсом выполнения пайплайна (если есть)
|
||||
@@ -274,10 +249,7 @@ def create_app() -> FastAPI:
|
||||
if not logger.handlers:
|
||||
stream_handler = logging.StreamHandler()
|
||||
stream_handler.setLevel(logging.INFO)
|
||||
file_handler = RotatingFileHandler("agentui.log", maxBytes=1_000_000, backupCount=3, encoding="utf-8")
|
||||
file_handler.setLevel(logging.INFO)
|
||||
logger.addHandler(stream_handler)
|
||||
logger.addHandler(file_handler)
|
||||
|
||||
# --- Simple in-process SSE hub (subscriptions per browser tab) ---
|
||||
import asyncio as _asyncio
|
||||
@@ -362,6 +334,77 @@ def create_app() -> FastAPI:
|
||||
except Exception: # noqa: BLE001
|
||||
pass
|
||||
|
||||
async def _run_pipeline_for_payload(request: Request, payload: Dict[str, Any], raw: Optional[bytes] = None) -> JSONResponse:
|
||||
# Единый обработчик: лог входящего запроса, нормализация, запуск PipelineExecutor, fallback-echo, лог ответа
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False
|
||||
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Диагностический INFO‑лог для валидации рефакторинга
|
||||
try:
|
||||
logger.info(
|
||||
"%s",
|
||||
json.dumps(
|
||||
{
|
||||
"event": "unified_handler",
|
||||
"vendor": unified.vendor_format,
|
||||
"model": unified.model,
|
||||
"pipeline_id": pipeline.get("id", "pipeline_editor"),
|
||||
},
|
||||
ensure_ascii=False,
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Mark pipeline start for UI and measure total active time
|
||||
t0 = time.perf_counter()
|
||||
try:
|
||||
await _trace_hub.publish({
|
||||
"event": "pipeline_start",
|
||||
"pipeline_id": pipeline.get("id", "pipeline_editor"),
|
||||
"ts": int(time.time() * 1000),
|
||||
})
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
|
||||
# Mark pipeline end for UI
|
||||
t1 = time.perf_counter()
|
||||
try:
|
||||
await _trace_hub.publish({
|
||||
"event": "pipeline_done",
|
||||
"pipeline_id": pipeline.get("id", "pipeline_editor"),
|
||||
"ts": int(time.time() * 1000),
|
||||
"duration_ms": int((t1 - t0) * 1000),
|
||||
})
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
|
||||
@app.get("/")
|
||||
async def index() -> HTMLResponse:
|
||||
html = (
|
||||
@@ -383,33 +426,7 @@ def create_app() -> FastAPI:
|
||||
payload = json.loads(raw or b"{}")
|
||||
except Exception: # noqa: BLE001
|
||||
raise HTTPException(status_code=400, detail="Invalid JSON")
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False # по требованию MVP без стриминга
|
||||
# контекст для пайплайна
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
return await _run_pipeline_for_payload(request, payload, raw)
|
||||
|
||||
# Google AI Studio совместимые роуты (Gemini):
|
||||
# POST /v1beta/models/{model}:generateContent?key=...
|
||||
@@ -421,34 +438,10 @@ def create_app() -> FastAPI:
|
||||
payload = json.loads(raw or b"{}")
|
||||
except Exception: # noqa: BLE001
|
||||
raise HTTPException(status_code=400, detail="Invalid JSON")
|
||||
# Убедимся, что модель присутствует в полезной нагрузке
|
||||
if not isinstance(payload, dict):
|
||||
raise HTTPException(status_code=400, detail="Invalid payload type")
|
||||
payload = {**payload, "model": model}
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
return await _run_pipeline_for_payload(request, payload, raw)
|
||||
|
||||
@app.post("/v1/models/{model}:generateContent")
|
||||
async def gemini_generate_content_v1(model: str, request: Request, key: Optional[str] = Query(default=None)) -> JSONResponse: # noqa: ARG001
|
||||
@@ -460,30 +453,7 @@ def create_app() -> FastAPI:
|
||||
if not isinstance(payload, dict):
|
||||
raise HTTPException(status_code=400, detail="Invalid payload type")
|
||||
payload = {**payload, "model": model}
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
return await _run_pipeline_for_payload(request, payload, raw)
|
||||
|
||||
# Catch-all для случаев, когда двоеточие в пути закодировано как %3A
|
||||
@app.post("/v1beta/models/{rest_of_path:path}")
|
||||
@@ -500,30 +470,7 @@ def create_app() -> FastAPI:
|
||||
if not isinstance(payload, dict):
|
||||
raise HTTPException(status_code=400, detail="Invalid payload type")
|
||||
payload = {**payload, "model": model}
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
return await _run_pipeline_for_payload(request, payload, raw)
|
||||
|
||||
@app.post("/v1/models/{rest_of_path:path}")
|
||||
async def gemini_generate_content_v1_catchall(rest_of_path: str, request: Request, key: Optional[str] = Query(default=None)) -> JSONResponse: # noqa: ARG001
|
||||
@@ -539,30 +486,7 @@ def create_app() -> FastAPI:
|
||||
if not isinstance(payload, dict):
|
||||
raise HTTPException(status_code=400, detail="Invalid payload type")
|
||||
payload = {**payload, "model": model}
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
return await _run_pipeline_for_payload(request, payload, raw)
|
||||
|
||||
# Anthropic Claude messages endpoint compatibility
|
||||
@app.post("/v1/messages")
|
||||
@@ -574,37 +498,114 @@ def create_app() -> FastAPI:
|
||||
raise HTTPException(status_code=400, detail="Invalid JSON")
|
||||
if not isinstance(payload, dict):
|
||||
raise HTTPException(status_code=400, detail="Invalid payload type")
|
||||
# Помечаем как Anthropic, передаём версию из заголовка в payload для детекции
|
||||
if anthropic_version:
|
||||
payload = {**payload, "anthropic_version": anthropic_version}
|
||||
else:
|
||||
payload = {**payload, "anthropic_version": payload.get("anthropic_version", "2023-06-01")}
|
||||
await _log_request(request, raw_body=raw, parsed=payload)
|
||||
unified = normalize_to_unified(payload)
|
||||
unified.stream = False
|
||||
incoming = {
|
||||
"method": request.method,
|
||||
"url": _sanitize_url(str(request.url)),
|
||||
"path": request.url.path,
|
||||
"query": request.url.query,
|
||||
"headers": dict(request.headers),
|
||||
"json": payload,
|
||||
}
|
||||
macro_ctx = build_macro_context(unified, incoming=incoming)
|
||||
pipeline = load_pipeline()
|
||||
executor = PipelineExecutor(pipeline)
|
||||
async def _trace(evt: Dict[str, Any]) -> None:
|
||||
try:
|
||||
base = {"pipeline_id": pipeline.get("id", "pipeline_editor")}
|
||||
await _trace_hub.publish({**base, **evt})
|
||||
except Exception:
|
||||
pass
|
||||
last = await executor.run(macro_ctx, trace=_trace)
|
||||
result = last.get("result") or await execute_pipeline_echo(unified)
|
||||
await _log_response(request, 200, result)
|
||||
return JSONResponse(result)
|
||||
return await _run_pipeline_for_payload(request, payload, raw)
|
||||
app.mount("/ui", StaticFiles(directory="static", html=True), name="ui")
|
||||
|
||||
# NOTE: нельзя объявлять эндпоинты под /ui/* после монтирования StaticFiles(/ui),
|
||||
# т.к. монтирование перехватывает все пути под /ui. Используем отдельный путь /ui_version.
|
||||
@app.get("/ui_version")
|
||||
async def ui_version() -> JSONResponse:
|
||||
try:
|
||||
import time
|
||||
static_dir = os.path.abspath("static")
|
||||
editor_path = os.path.join(static_dir, "editor.html")
|
||||
js_ser_path = os.path.join(static_dir, "js", "serialization.js")
|
||||
js_pm_path = os.path.join(static_dir, "js", "pm-ui.js")
|
||||
|
||||
def md5p(p: str):
|
||||
try:
|
||||
with open(p, "rb") as f:
|
||||
return hashlib.md5(f.read()).hexdigest()
|
||||
except Exception:
|
||||
return None
|
||||
|
||||
payload = {
|
||||
"cwd": os.path.abspath("."),
|
||||
"static_dir": static_dir,
|
||||
"files": {
|
||||
"editor.html": md5p(editor_path),
|
||||
"js/serialization.js": md5p(js_ser_path),
|
||||
"js/pm-ui.js": md5p(js_pm_path),
|
||||
},
|
||||
"ts": int(time.time()),
|
||||
}
|
||||
return JSONResponse(payload, headers={"Cache-Control": "no-store"})
|
||||
except Exception as e:
|
||||
return JSONResponse({"error": str(e)}, status_code=500, headers={"Cache-Control": "no-store"})
|
||||
|
||||
# --- Favicon and PWA icons at root -----------------------------------------
|
||||
FAV_DIR = "favicon_io_saya"
|
||||
|
||||
@app.get("/favicon.ico")
|
||||
async def _favicon_ico():
|
||||
p = f"{FAV_DIR}/favicon.ico"
|
||||
try:
|
||||
return FileResponse(p, media_type="image/x-icon")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="favicon not found")
|
||||
|
||||
@app.get("/apple-touch-icon.png")
|
||||
async def _apple_touch_icon():
|
||||
p = f"{FAV_DIR}/apple-touch-icon.png"
|
||||
try:
|
||||
return FileResponse(p, media_type="image/png")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="apple-touch-icon not found")
|
||||
|
||||
@app.get("/favicon-32x32.png")
|
||||
async def _favicon_32():
|
||||
p = f"{FAV_DIR}/favicon-32x32.png"
|
||||
try:
|
||||
return FileResponse(p, media_type="image/png")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="favicon-32x32 not found")
|
||||
|
||||
@app.get("/favicon-16x16.png")
|
||||
async def _favicon_16():
|
||||
p = f"{FAV_DIR}/favicon-16x16.png"
|
||||
try:
|
||||
return FileResponse(p, media_type="image/png")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="favicon-16x16 not found")
|
||||
|
||||
@app.get("/android-chrome-192x192.png")
|
||||
async def _android_192():
|
||||
p = f"{FAV_DIR}/android-chrome-192x192.png"
|
||||
try:
|
||||
return FileResponse(p, media_type="image/png")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="android-chrome-192x192 not found")
|
||||
|
||||
@app.get("/android-chrome-512x512.png")
|
||||
async def _android_512():
|
||||
p = f"{FAV_DIR}/android-chrome-512x512.png"
|
||||
try:
|
||||
return FileResponse(p, media_type="image/png")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="android-chrome-512x512 not found")
|
||||
|
||||
@app.get("/site.webmanifest")
|
||||
async def _site_manifest():
|
||||
p = f"{FAV_DIR}/site.webmanifest"
|
||||
try:
|
||||
return FileResponse(p, media_type="application/manifest+json")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="site.webmanifest not found")
|
||||
|
||||
# Custom APNG favicon for "busy" state in UI
|
||||
@app.get("/saya1.png")
|
||||
async def _apng_busy_icon():
|
||||
p = f"{FAV_DIR}/saya1.png"
|
||||
try:
|
||||
# APNG served as image/png is acceptable for browsers
|
||||
return FileResponse(p, media_type="image/png")
|
||||
except Exception:
|
||||
raise HTTPException(status_code=404, detail="saya1.png not found")
|
||||
|
||||
# Variable store API (per-pipeline)
|
||||
@app.get("/admin/vars")
|
||||
async def get_vars() -> JSONResponse:
|
||||
@@ -640,7 +641,37 @@ def create_app() -> FastAPI:
|
||||
# Admin API для пайплайна
|
||||
@app.get("/admin/pipeline")
|
||||
async def get_pipeline() -> JSONResponse:
|
||||
return JSONResponse(load_pipeline())
|
||||
p = load_pipeline()
|
||||
# Диагностический лог состава meta (для подтверждения DRY-рефакторинга)
|
||||
try:
|
||||
meta_keys = [
|
||||
"id","name","parallel_limit","loop_mode","loop_max_iters","loop_time_budget_ms","clear_var_store",
|
||||
"http_timeout_sec","text_extract_strategy","text_extract_json_path","text_join_sep","text_extract_presets"
|
||||
]
|
||||
present = [k for k in meta_keys if k in p]
|
||||
meta_preview = {k: p.get(k) for k in present if k != "text_extract_presets"}
|
||||
presets_count = 0
|
||||
try:
|
||||
presets = p.get("text_extract_presets")
|
||||
if isinstance(presets, list):
|
||||
presets_count = len(presets)
|
||||
except Exception:
|
||||
presets_count = 0
|
||||
logger.info(
|
||||
"%s",
|
||||
json.dumps(
|
||||
{
|
||||
"event": "admin_get_pipeline_meta",
|
||||
"keys": present,
|
||||
"presets_count": presets_count,
|
||||
"meta_preview": meta_preview,
|
||||
},
|
||||
ensure_ascii=False,
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
return JSONResponse(p)
|
||||
|
||||
@app.post("/admin/pipeline")
|
||||
async def set_pipeline(request: Request) -> JSONResponse:
|
||||
@@ -652,6 +683,37 @@ def create_app() -> FastAPI:
|
||||
# простая проверка
|
||||
if not isinstance(pipeline, dict) or "nodes" not in pipeline:
|
||||
raise HTTPException(status_code=400, detail="Invalid pipeline format")
|
||||
|
||||
# Диагностический лог входящих meta-ключей перед сохранением
|
||||
try:
|
||||
meta_keys = [
|
||||
"id","name","parallel_limit","loop_mode","loop_max_iters","loop_time_budget_ms","clear_var_store",
|
||||
"http_timeout_sec","text_extract_strategy","text_extract_json_path","text_join_sep","text_extract_presets"
|
||||
]
|
||||
present = [k for k in meta_keys if k in pipeline]
|
||||
meta_preview = {k: pipeline.get(k) for k in present if k != "text_extract_presets"}
|
||||
presets_count = 0
|
||||
try:
|
||||
presets = pipeline.get("text_extract_presets")
|
||||
if isinstance(presets, list):
|
||||
presets_count = len(presets)
|
||||
except Exception:
|
||||
presets_count = 0
|
||||
logger.info(
|
||||
"%s",
|
||||
json.dumps(
|
||||
{
|
||||
"event": "admin_set_pipeline_meta",
|
||||
"keys": present,
|
||||
"presets_count": presets_count,
|
||||
"meta_preview": meta_preview,
|
||||
},
|
||||
ensure_ascii=False,
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
save_pipeline(pipeline)
|
||||
return JSONResponse({"ok": True})
|
||||
|
||||
|
||||
@@ -86,6 +86,41 @@ def _read_kv_from_proxy_file() -> Dict[str, str]:
|
||||
return out
|
||||
return out
|
||||
|
||||
def _read_second_bare_flag_from_proxy() -> Optional[bool]:
|
||||
"""
|
||||
Читает «вторую голую строку» после URL в proxy.txt и интерпретирует как флаг verify:
|
||||
true/1/yes/on -> True
|
||||
false/0/no/off -> False
|
||||
Возвращает None, если строка отсутствует или не распознана.
|
||||
"""
|
||||
try:
|
||||
p = Path("proxy.txt")
|
||||
if not p.exists():
|
||||
return None
|
||||
lines = [ln.strip() for ln in p.read_text(encoding="utf-8").splitlines()]
|
||||
# найдём первую «URL» строку (без '=' и не пустую/коммент)
|
||||
idx_url = -1
|
||||
for i, ln in enumerate(lines):
|
||||
if not ln or ln.startswith("#") or "=" in ln:
|
||||
continue
|
||||
idx_url = i
|
||||
break
|
||||
if idx_url >= 0:
|
||||
# ищем следующую «голую» строку
|
||||
for j in range(idx_url + 1, len(lines)):
|
||||
ln = lines[j].strip()
|
||||
if not ln or ln.startswith("#") or "=" in ln:
|
||||
continue
|
||||
low = ln.lower()
|
||||
if low in ("1", "true", "yes", "on"):
|
||||
return True
|
||||
if low in ("0", "false", "no", "off"):
|
||||
return False
|
||||
# если это не похожее на флаг — считаем отсутствующим
|
||||
break
|
||||
except Exception:
|
||||
return None
|
||||
return None
|
||||
def get_tls_verify() -> Union[bool, str]:
|
||||
"""
|
||||
Возвращает значение для параметра httpx.AsyncClient(verify=...):
|
||||
@@ -119,31 +154,11 @@ def get_tls_verify() -> Union[bool, str]:
|
||||
if path.exists():
|
||||
return str(path)
|
||||
# 2.1) Дополнительно: поддержка второй строки без ключа — true/false
|
||||
try:
|
||||
p = Path("proxy.txt")
|
||||
if p.exists():
|
||||
lines = [ln.strip() for ln in p.read_text(encoding="utf-8").splitlines()]
|
||||
# найдём первую «URL» строку (без '=' и не пустую/коммент)
|
||||
idx_url = -1
|
||||
for i, ln in enumerate(lines):
|
||||
if not ln or ln.startswith("#") or "=" in ln:
|
||||
continue
|
||||
idx_url = i
|
||||
break
|
||||
if idx_url >= 0:
|
||||
# ищем следующую «голую» строку
|
||||
for j in range(idx_url + 1, len(lines)):
|
||||
ln = lines[j].strip()
|
||||
if not ln or ln.startswith("#") or "=" in ln:
|
||||
continue
|
||||
low = ln.lower()
|
||||
if low in ("1", "true", "yes", "on"):
|
||||
return True
|
||||
if low in ("0", "false", "no", "off"):
|
||||
return False
|
||||
# если это не похожее на флаг, игнорируем и продолжаем
|
||||
except Exception:
|
||||
pass
|
||||
second = _read_second_bare_flag_from_proxy()
|
||||
if second is True:
|
||||
return True
|
||||
if second is False:
|
||||
return False
|
||||
|
||||
# 3) Файл по умолчанию в корне проекта
|
||||
default_ca = Path("proxy-ca.pem")
|
||||
@@ -173,26 +188,9 @@ def is_verify_explicit() -> bool:
|
||||
if "verify" in kv or "ca" in kv:
|
||||
return True
|
||||
# Вторая «голая» строка как явный флаг
|
||||
try:
|
||||
p = Path("proxy.txt")
|
||||
if p.exists():
|
||||
lines = [ln.strip() for ln in p.read_text(encoding="utf-8").splitlines()]
|
||||
idx_url = -1
|
||||
for i, ln in enumerate(lines):
|
||||
if not ln or ln.startswith("#") or "=" in ln:
|
||||
continue
|
||||
idx_url = i
|
||||
break
|
||||
if idx_url >= 0:
|
||||
for j in range(idx_url + 1, len(lines)):
|
||||
ln = lines[j].strip()
|
||||
if not ln or ln.startswith("#") or "=" in ln:
|
||||
continue
|
||||
if ln.lower() in ("1", "0", "true", "false", "yes", "no", "on", "off"):
|
||||
return True
|
||||
break
|
||||
except Exception:
|
||||
pass
|
||||
second = _read_second_bare_flag_from_proxy()
|
||||
if second is not None:
|
||||
return True
|
||||
|
||||
if Path("proxy-ca.pem").exists():
|
||||
return True
|
||||
|
||||
@@ -11,17 +11,93 @@ PRESETS_DIR = Path("presets")
|
||||
VARS_DIR = Path(".agentui") / "vars"
|
||||
|
||||
|
||||
# DRY нормализация meta/пайплайна: единый источник дефолтов и типов
|
||||
def normalize_pipeline(pipeline: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Приводит верхнеуровневые ключи пайплайна к согласованному виду, заполняет дефолты.
|
||||
Безопасно к отсутствующим ключам и неверным типам.
|
||||
"""
|
||||
if not isinstance(pipeline, dict):
|
||||
pipeline = {}
|
||||
out: Dict[str, Any] = dict(pipeline)
|
||||
|
||||
def _to_int(v, d):
|
||||
try:
|
||||
n = int(v)
|
||||
return n if n > 0 else d
|
||||
except Exception:
|
||||
return d
|
||||
|
||||
def _to_float(v, d):
|
||||
try:
|
||||
n = float(v)
|
||||
return n if n > 0 else d
|
||||
except Exception:
|
||||
return d
|
||||
|
||||
# Базовые поля
|
||||
out["id"] = str(out.get("id") or "pipeline_editor")
|
||||
out["name"] = str(out.get("name") or "Edited Pipeline")
|
||||
out["parallel_limit"] = _to_int(out.get("parallel_limit"), 8)
|
||||
out["loop_mode"] = str(out.get("loop_mode") or "dag")
|
||||
out["loop_max_iters"] = _to_int(out.get("loop_max_iters"), 1000)
|
||||
out["loop_time_budget_ms"] = _to_int(out.get("loop_time_budget_ms"), 10000)
|
||||
out["clear_var_store"] = bool(out.get("clear_var_store", True))
|
||||
out["http_timeout_sec"] = _to_float(out.get("http_timeout_sec"), 60)
|
||||
|
||||
# Глобальные опции извлечения текста для [[OUTx]]
|
||||
out["text_extract_strategy"] = str(out.get("text_extract_strategy") or "auto")
|
||||
out["text_extract_json_path"] = str(out.get("text_extract_json_path") or "")
|
||||
# Поддержка разных написаний text_join_sep
|
||||
join_sep = out.get("text_join_sep")
|
||||
if join_sep is None:
|
||||
for k in list(out.keys()):
|
||||
if isinstance(k, str) and k.lower() == "text_join_sep":
|
||||
join_sep = out.get(k)
|
||||
break
|
||||
out["text_join_sep"] = str(join_sep or "\n")
|
||||
|
||||
# Пресеты парсинга
|
||||
presets = out.get("text_extract_presets")
|
||||
norm_presets: List[Dict[str, Any]] = []
|
||||
if isinstance(presets, list):
|
||||
for i, it in enumerate(presets):
|
||||
if not isinstance(it, dict):
|
||||
continue
|
||||
norm_presets.append({
|
||||
"id": str(it.get("id") or f"p{i}"),
|
||||
"name": str(it.get("name") or it.get("json_path") or "Preset"),
|
||||
"strategy": str(it.get("strategy") or "auto"),
|
||||
"json_path": str(it.get("json_path") or ""),
|
||||
"join_sep": str(it.get("join_sep") or "\n"),
|
||||
})
|
||||
out["text_extract_presets"] = norm_presets
|
||||
|
||||
# Узлы — список
|
||||
try:
|
||||
nodes = out.get("nodes") or []
|
||||
if not isinstance(nodes, list):
|
||||
nodes = []
|
||||
out["nodes"] = nodes
|
||||
except Exception:
|
||||
out["nodes"] = []
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def load_pipeline() -> Dict[str, Any]:
|
||||
if PIPELINE_FILE.exists():
|
||||
try:
|
||||
return json.loads(PIPELINE_FILE.read_text(encoding="utf-8"))
|
||||
except Exception:
|
||||
pass
|
||||
return default_pipeline()
|
||||
if PIPELINE_FILE.exists():
|
||||
try:
|
||||
data = json.loads(PIPELINE_FILE.read_text(encoding="utf-8"))
|
||||
return normalize_pipeline(data)
|
||||
except Exception:
|
||||
pass
|
||||
return normalize_pipeline(default_pipeline())
|
||||
|
||||
|
||||
def save_pipeline(pipeline: Dict[str, Any]) -> None:
|
||||
PIPELINE_FILE.write_text(json.dumps(pipeline, ensure_ascii=False, indent=2), encoding="utf-8")
|
||||
norm = normalize_pipeline(pipeline or {})
|
||||
PIPELINE_FILE.write_text(json.dumps(norm, ensure_ascii=False, indent=2), encoding="utf-8")
|
||||
|
||||
|
||||
def list_presets() -> List[str]:
|
||||
|
||||
@@ -35,6 +35,11 @@ _BARE_MACRO_RE = re.compile(r"\[\[\s*([A-Za-z_][A-Za-z0-9_]*(?:\.[^\]]+?)?)\s*\]
|
||||
# Разбираем выражение до ближайшего '}}', допускаем '}' внутри (например в JSON-литералах)
|
||||
_BRACES_RE = re.compile(r"\{\{\s*(.*?)\s*\}\}", re.DOTALL)
|
||||
|
||||
# Сокращённый синтаксис: img(mime?)[[...]] → data:<mime>;base64,<resolved_inner_macro>
|
||||
# Пример: img()[[OUT1]] → data:image/png;base64,{{resolved OUT1}}
|
||||
# img(jpeg)[[OUT:n1.result...]] → data:image/jpeg;base64,{{resolved}}
|
||||
_IMG_WRAPPER_RE = re.compile(r"(?is)img\(\s*([^)]+?)?\s*\)\s*\[\[\s*(.+?)\s*\]\]")
|
||||
|
||||
|
||||
def _split_path(path: str) -> List[str]:
|
||||
return [p.strip() for p in str(path).split(".") if str(p).strip()]
|
||||
@@ -164,12 +169,21 @@ def _best_text_from_outputs(node_out: Any) -> str:
|
||||
# Gemini
|
||||
try:
|
||||
if isinstance(base, dict):
|
||||
cand0 = (base.get("candidates") or [{}])[0]
|
||||
content = cand0.get("content") or {}
|
||||
parts0 = (content.get("parts") or [{}])[0]
|
||||
t = parts0.get("text")
|
||||
if isinstance(t, str):
|
||||
return t
|
||||
cands = base.get("candidates") or []
|
||||
texts: List[str] = []
|
||||
for cand in cands:
|
||||
try:
|
||||
content = cand.get("content") or {}
|
||||
parts = content.get("parts") or []
|
||||
for p in parts:
|
||||
if isinstance(p, dict):
|
||||
t = p.get("text")
|
||||
if isinstance(t, str) and t.strip():
|
||||
texts.append(t.strip())
|
||||
except Exception:
|
||||
continue
|
||||
if texts:
|
||||
return "\n".join(texts)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
@@ -203,6 +217,47 @@ def render_template_simple(template: str, context: Dict[str, Any], out_map: Dict
|
||||
return ""
|
||||
s = str(template)
|
||||
|
||||
# 0) Сокращённый синтаксис: img(mime?)[[...]] → data:<mime>;base64,<resolved>
|
||||
# Выполняем до развёртки обычных [[...]] макросов, чтобы внутри можно было использовать любой квадратный макрос.
|
||||
def _normalize_mime(m: str) -> str:
|
||||
mm = (m or "").strip().lower()
|
||||
if not mm:
|
||||
return "image/png"
|
||||
if "/" in mm:
|
||||
return mm
|
||||
return {
|
||||
"png": "image/png",
|
||||
"jpg": "image/jpeg",
|
||||
"jpeg": "image/jpeg",
|
||||
"webp": "image/webp",
|
||||
"gif": "image/gif",
|
||||
"svg": "image/svg+xml",
|
||||
"bmp": "image/bmp",
|
||||
"tif": "image/tiff",
|
||||
"tiff": "image/tiff",
|
||||
}.get(mm, mm)
|
||||
|
||||
def _repl_imgwrap(m: re.Match) -> str:
|
||||
mime_raw = m.group(1) or ""
|
||||
inner = m.group(2) or ""
|
||||
mime = _normalize_mime(mime_raw)
|
||||
try:
|
||||
val = _resolve_square_macro_value(inner, context, out_map)
|
||||
except Exception:
|
||||
val = ""
|
||||
if isinstance(val, (dict, list, bool)) or val is None:
|
||||
val = _stringify_for_template(val)
|
||||
else:
|
||||
val = str(val)
|
||||
return f"data:{mime};base64,{val}"
|
||||
|
||||
# Поддерживаем много вхождений — повторяем до исчерпания (на случай каскадных макросов)
|
||||
while True:
|
||||
ns, cnt = _IMG_WRAPPER_RE.subn(_repl_imgwrap, s)
|
||||
s = ns
|
||||
if cnt == 0:
|
||||
break
|
||||
|
||||
# 1) Макросы [[VAR:...]] / [[OUT:...]] / [[STORE:...]]
|
||||
def repl_var(m: re.Match) -> str:
|
||||
path = m.group(1).strip()
|
||||
@@ -539,8 +594,18 @@ def _tokenize_condition_expr(expr: str, context: Dict[str, Any], out_map: Dict[s
|
||||
while j < n and (expr[j].isalnum() or expr[j] in "._"):
|
||||
j += 1
|
||||
word = expr[i:j]
|
||||
# Логические в словах не поддерживаем (используйте &&, ||, !)
|
||||
tokens.append(word)
|
||||
# Поддержка «голых» идентификаторов из vars: cycleindex, WAS_ERROR и т.п.
|
||||
# Если это простой идентификатор (без точек) и он есть в context.vars — биндим его значением.
|
||||
try:
|
||||
vmap = context.get("vars") or {}
|
||||
except Exception:
|
||||
vmap = {}
|
||||
if re.fullmatch(r"[A-Za-z_][A-Za-z0-9_]*", word) and isinstance(vmap, dict) and word in vmap:
|
||||
name = add_binding(vmap.get(word))
|
||||
tokens.append(name)
|
||||
else:
|
||||
# Логические в словах не поддерживаем (используйте &&, ||, !)
|
||||
tokens.append(word)
|
||||
i = j
|
||||
continue
|
||||
|
||||
|
||||
@@ -33,12 +33,25 @@ def build_client(timeout: float = 60.0) -> httpx.AsyncClient:
|
||||
print("[agentui.http_client] proxies=", masked, " verify=", verify)
|
||||
|
||||
# httpx сам понимает схемы socks://, socks5:// при установленном extras [socks]
|
||||
client = httpx.AsyncClient(
|
||||
timeout=timeout,
|
||||
proxies=proxies,
|
||||
follow_redirects=True,
|
||||
verify=verify,
|
||||
)
|
||||
try:
|
||||
client = httpx.AsyncClient(
|
||||
timeout=timeout,
|
||||
proxies=proxies,
|
||||
follow_redirects=True,
|
||||
verify=verify,
|
||||
)
|
||||
except TypeError:
|
||||
if proxies:
|
||||
try:
|
||||
masked = {k: _mask_proxy(v) for k, v in proxies.items()}
|
||||
except Exception:
|
||||
masked = proxies
|
||||
print(f"[agentui.http_client] WARNING: proxies not supported in httpx.AsyncClient, skipping proxies={masked}")
|
||||
client = httpx.AsyncClient(
|
||||
timeout=timeout,
|
||||
follow_redirects=True,
|
||||
verify=verify,
|
||||
)
|
||||
return client
|
||||
|
||||
|
||||
|
||||
@@ -6,9 +6,9 @@
|
||||
|
||||
Файлы, где «живет» эта магия:
|
||||
- Сервер и конечные точки: [agentui/api/server.py](agentui/api/server.py)
|
||||
- Исполнитель узлов (сердце конвейера): [PipelineExecutor.run()](agentui/pipeline/executor.py:170)
|
||||
- Ноды: [ProviderCallNode.run()](agentui/pipeline/executor.py:1631), [RawForwardNode.run()](agentui/pipeline/executor.py:1939), [ReturnNode.run()](agentui/pipeline/executor.py:2256), [IfNode.run()](agentui/pipeline/executor.py:2350), SetVars внутри того же файла
|
||||
- Шаблонизатор (подстановки [[...]] и {{ ... }}): [render_template_simple()](agentui/pipeline/templating.py:191), булевы выражения If: [eval_condition_expr()](agentui/pipeline/templating.py:336)
|
||||
- Исполнитель узлов (сердце конвейера): [PipelineExecutor.run()](agentui/pipeline/executor.py:316)
|
||||
- Ноды: [ProviderCallNode.run()](agentui/pipeline/executor.py:2007), [RawForwardNode.run()](agentui/pipeline/executor.py:2477), [ReturnNode.run()](agentui/pipeline/executor.py:2798), [IfNode.run()](agentui/pipeline/executor.py:2892), SetVars внутри того же файла
|
||||
- Шаблонизатор (подстановки [[...]] и {{ ... }}): [render_template_simple()](agentui/pipeline/templating.py:196), булевы выражения If: [eval_condition_expr()](agentui/pipeline/templating.py:382)
|
||||
|
||||
— — —
|
||||
|
||||
@@ -218,10 +218,10 @@ Return сам завернёт текст в правильную структу
|
||||
|
||||
Когда нода (ProviderCall или RawForward) получила JSON от провайдера, движок старается «вынуть» из него удобный текст:
|
||||
- OpenAI: choices[0].message.content
|
||||
- Gemini: candidates[0].content.parts[0].text
|
||||
- Gemini: все parts[].text во всех candidates склеиваются через "\n" (пустые/пробельные части игнорируются)
|
||||
- Claude: content[].text (склейка)
|
||||
- Если формат неизвестен — идёт «лучший догадчик» по глубине, чтобы найти текст
|
||||
- Можно задать пресет (JSONPath) в настройках ноды или глобально в «Запуск» → «Пресеты парсинга OUTx»
|
||||
- Можно задать пресет (JSONPath) в настройках ноды или глобально в «Запуск» → «Пресеты парсинга OUTx»; для Gemini альтернатива авто: json_path="candidates.*.content.parts.*.text", join_sep="\n"
|
||||
|
||||
Логика извлечения и пресетов находится в: [ProviderCallNode.run()](agentui/pipeline/executor.py:1631), [RawForwardNode.run()](agentui/pipeline/executor.py:1939)
|
||||
|
||||
@@ -275,12 +275,12 @@ Return сам завернёт текст в правильную структу
|
||||
- Создание приложения/роутов: [create_app()](agentui/api/server.py:270)
|
||||
- Нормализация payload (OpenAI/Gemini/Claude → единый вид): [normalize_to_unified()](agentui/api/server.py:44)
|
||||
- Контекст для макросов (incoming/chat/params/…): [build_macro_context()](agentui/api/server.py:143)
|
||||
- Исполнитель конвейера и «волны»: [PipelineExecutor.run()](agentui/pipeline/executor.py:170)
|
||||
- Узел вызова провайдера (сборка [[PROMPT]], лог HTTP): [ProviderCallNode.run()](agentui/pipeline/executor.py:1631)
|
||||
- Прямой форвард запроса: [RawForwardNode.run()](agentui/pipeline/executor.py:1939)
|
||||
- Финализация ответа под формат клиента: [ReturnNode.run()](agentui/pipeline/executor.py:2256)
|
||||
- Условия If (contains, &&, ||, ! и макросы): [IfNode.run()](agentui/pipeline/executor.py:2350), [eval_condition_expr()](agentui/pipeline/templating.py:336)
|
||||
- Шаблонизатор макросов [[...]] и {{ ... }}: [render_template_simple()](agentui/pipeline/templating.py:191)
|
||||
- Исполнитель конвейера и «волны»: [PipelineExecutor.run()](agentui/pipeline/executor.py:316)
|
||||
- Узел вызова провайдера (сборка [[PROMPT]], лог HTTP): [ProviderCallNode.run()](agentui/pipeline/executor.py:2007)
|
||||
- Прямой форвард запроса: [RawForwardNode.run()](agentui/pipeline/executor.py:2477)
|
||||
- Финализация ответа под формат клиента: [ReturnNode.run()](agentui/pipeline/executor.py:2798)
|
||||
- Условия If (contains, &&, ||, ! и макросы): [IfNode.run()](agentui/pipeline/executor.py:2892), [eval_condition_expr()](agentui/pipeline/templating.py:382)
|
||||
- Шаблонизатор макросов [[...]] и {{ ... }}: [render_template_simple()](agentui/pipeline/templating.py:196)
|
||||
- Определение провайдера по форме JSON: [detect_vendor()](agentui/common/vendors.py:8)
|
||||
|
||||
— — —
|
||||
@@ -431,4 +431,266 @@ Return сам завернёт текст в правильную структу
|
||||
|
||||
Где посмотреть действующие значения
|
||||
- В редакторе нажмите «ПЕРЕМЕННЫЕ»: там видно STORE (включая snapshot OUT_TEXT и алиасы OUT1/OUT2). Клик по строке — копирование макроса для вставки.
|
||||
Схема работы панели описана в [static/editor.html](static/editor.html) и скриптах [static/js/serialization.js](static/js/serialization.js), [static/js/pm-ui.js](static/js/pm-ui.js).
|
||||
Схема работы панели описана в [static/editor.html](static/editor.html) и скриптах [static/js/serialization.js](static/js/serialization.js), [static/js/pm-ui.js](static/js/pm-ui.js).
|
||||
|
||||
10) Работа с изображениями (ProviderCall + переменные)
|
||||
|
||||
Обзор
|
||||
- Теперь можно:
|
||||
- хранить изображения в переменных SetVars в виде data URL;
|
||||
- вставлять изображения в Prompt Blocks через Markdown-нотацию;
|
||||
- вызывать провайдеров OpenAI / Claude / Gemini с мультимодальными сообщениями.
|
||||
|
||||
Как хранить изображения в переменных
|
||||
- В SetVars (mode=expr) доступны новые безопасные функции:
|
||||
- file_b64(path) — читает файл и возвращает base64-строку (без префикса).
|
||||
- data_url(b64, mime) — собирает data URL: data:mime;base64,<b64>.
|
||||
- file_data_url(path, mime?) — обёртка: читает файл, определяет mime по расширению (если не указан) и возвращает полноценный data URL.
|
||||
- Примеры SetVars:
|
||||
- name: IMG1
|
||||
mode: expr
|
||||
value: file_data_url('static/samples/cat.png','image/png')
|
||||
- name: IMG2
|
||||
mode: expr
|
||||
value: data_url(file_b64('static/samples/dog.jpg'), 'image/jpeg')
|
||||
- После этого [[IMG1]] / [[IMG2]] вернут строку-полный data URL, пригодный для мультимодальных LLM.
|
||||
|
||||
Как вставлять картинки в Prompt Blocks
|
||||
- Внутри блока (system/user/assistant) используйте Markdown-нотацию:
|
||||
- 
|
||||
- 
|
||||
- 
|
||||
- Во время исполнения ProviderCall блок превращается в список частей:
|
||||
- текстовые сегменты → {"type":"text","text":"..."}
|
||||
- изображения → {"type":"image_url","url":"..."}
|
||||
- Для plain‑текста ничего не меняется (обратная совместимость полностью сохранена).
|
||||
|
||||
Маппинг для провайдеров
|
||||
- OpenAI (chat.completions):
|
||||
- message.content → либо строка, либо массив частей:
|
||||
- {"type":"text","text":"..."}
|
||||
- {"type":"image_url","image_url":{"url":"<http(s) или data:...>"}}
|
||||
- Claude (messages v2023‑06‑01):
|
||||
- message.content — массив блоков:
|
||||
- {"type":"text","text":"..."}
|
||||
- {"type":"image","source":{"type":"url","url":"..."}} — для http(s)
|
||||
- {"type":"image","source":{"type":"base64","media_type":"image/png","data":"..."}} — для data URL
|
||||
- Gemini (generateContent):
|
||||
- contents[].parts — микс:
|
||||
- {"text":"..."}
|
||||
- {"inline_data":{"mime_type":"image/png","data":"<base64>"}} — для data URL
|
||||
- http/https URL напрямую не инлайнится; либо преобразуйте в data URL, либо реализуйте внешнюю загрузку (не требуется для базовой поддержки).
|
||||
|
||||
Мини-рецепт
|
||||
1) SetVars:
|
||||
- name: IMG
|
||||
- mode: expr
|
||||
- value: file_data_url('static/pictures/cat.png', 'image/png')
|
||||
2) ProviderCall (OpenAI/Gemini/Claude), Prompt Blocks, user:
|
||||
- Опиши картинку ниже кратко.
|
||||
- 
|
||||
|
||||
Примечания
|
||||
- Никакого тримминга больших строк и base64 по умолчанию не применяется (по пожеланию). Храните картинки разумного размера.
|
||||
- JSON‑тело ProviderCall остаётся валидным JSON после развёртывания [[PROMPT]], т.к. преобразование в «части» выполняется до формирования payload.
|
||||
- Для OpenAI и Claude можно использовать как http/https URL, так и data URL. Для Gemini предпочтительно data URL (inline_data).
|
||||
|
||||
Где реализовано
|
||||
- Backend преобразование блоков и маппинг под провайдеров — см. файл agentui/pipeline/executor.py.
|
||||
- Новые функции expr для SetVars — см. тот же файл внутри SetVarsNode._safe_eval_expr().
|
||||
- Шаблонизатор как и раньше отвечает за развёртку [[...]] / {{ ... }} — см. agentui/pipeline/templating.py.
|
||||
|
||||
|
||||
10.1) Супер‑короткая запись для картинок: img(mime)[[...]]
|
||||
|
||||
Задача
|
||||
- У вас есть base64‑строка (без префикса data:), например вы её извлекли пресетом JSONPath: candidates.0.content.parts.1.inlineData.data.
|
||||
- Хотите получить ПОЛНЫЙ data URL без плясок с expr и функциям SetVars — прямо в обычной строке шаблона.
|
||||
|
||||
Решение (новый синтаксис)
|
||||
- Пишите: img(mime)[[МАКРОС_С_BASE64]]
|
||||
- На выходе получится строка: data:<mime>;base64,<ваш_base64>
|
||||
|
||||
Где это работает
|
||||
- Везде, где используется шаблонизатор [render_template_simple()](agentui/pipeline/templating.py:191):
|
||||
- Return.text_template
|
||||
- ProviderCall.template / headers / endpoint
|
||||
- RawForward.extra_headers / override_path
|
||||
- SetVars (mode=string)
|
||||
- Реализовано в препроцессоре шаблонов: [templating.py](agentui/pipeline/templating.py)
|
||||
|
||||
Синтаксис подробно
|
||||
1) Базовый случай (по умолчанию image/png):
|
||||
- img()[[OUT1]]
|
||||
→ data:image/png;base64,[[OUT1]] (после разворачивания [[OUT1]] — получится полноценный data URL)
|
||||
|
||||
2) Явный тип по короткому имени:
|
||||
- img(png)[[...]] → image/png
|
||||
- img(jpeg)[[...]] → image/jpeg (alias: jpg → image/jpeg)
|
||||
- img(webp)[[...]] → image/webp
|
||||
- img(gif)[[...]] → image/gif
|
||||
- img(svg)[[...]] → image/svg+xml
|
||||
- img(bmp)[[...]] → image/bmp
|
||||
- img(tif)[[...]] / img(tiff)[[...]] → image/tiff
|
||||
|
||||
3) Полный MIME:
|
||||
- img(image/heic)[[...]] → data:image/heic;base64,...
|
||||
|
||||
4) Динамический MIME через фигурные скобки:
|
||||
- img({{ OUT.n1.result.candidates.0.content.parts.1.inlineData.mimeType|default('image/png') }})[[OUT1]]
|
||||
- Важно: MIME в круглых скобках можно задавать фигурными {{ ... }} — после сборки строки препроцессор оставит «data:{{ ... }};base64,...», и следующий проход шаблонизатора подставит реальное значение.
|
||||
|
||||
Пошаговые примеры (копируйте и вставляйте)
|
||||
|
||||
A. Вернуть картинку как строку data URL из Return без SetVars и expr
|
||||
- У вас пресет JSONPath на base64: candidates.0.content.parts.1.inlineData.data.
|
||||
- В Return.text_template напишите:
|
||||
img(png)[[OUT1]]
|
||||
или, если [[OUT1]] — не base64, а вытащить надо конкретное поле:
|
||||
img(png)[[VAR:OUT.n1.result.candidates.0.content.parts.1.inlineData.data]]
|
||||
- В результате Return отдаст текст:
|
||||
...
|
||||
- Это удобно, когда потребитель умеет работать с data URL строками.
|
||||
|
||||
B. Сформировать HTML <img> в Return прямо в шаблоне
|
||||
- В Return.text_template:
|
||||
<img src="img(jpeg)[[VAR:OUT.n1.result.candidates.0.content.parts.1.inlineData.data]]" alt="preview">
|
||||
- На выходе получится полноценный HTML с src="data:image/jpeg;base64,...".
|
||||
|
||||
C. Положить data URL в переменную без expr
|
||||
- SetVars → переменная IMG (mode=string):
|
||||
value: img()[[VAR:OUT.n1.result.candidates.0.content.parts.1.inlineData.data]]
|
||||
- Далее [[IMG]] — готовый data URL (можно вставлять куда угодно).
|
||||
|
||||
D. Динамический MIME из ответа провайдера
|
||||
- Если в JSON есть mimeType:
|
||||
img({{ OUT.n1.result.candidates.0.content.parts.1.inlineData.mimeType|default('image/png') }})[[VAR:OUT.n1.result.candidates.0.content.parts.1.inlineData.data]]
|
||||
|
||||
Часто задаваемые вопросы
|
||||
|
||||
Q1: Чем отличается от «старого» способа через SetVars + data_url()?
|
||||
- Старый (через expr) остаётся и удобен, когда нужно переиспользовать значение в нескольких местах или делать дополнительную логику.
|
||||
- Новый — мгновенная подстановка «в одну строку» прямо в шаблоне, без expr и функций. Он быстрее для типовой задачи «base64 → data URL».
|
||||
|
||||
Q2: Что будет, если внутри [[...]] вернётся не строка?
|
||||
- Шаблонизатор приведёт значение к строке (для dict/list — сериализует в JSON). Но для data URL ожидается именно base64‑строка. Следите, чтобы путь/макрос давал строку, не объект.
|
||||
|
||||
Q3: Можно ли внутри скобок img(...) использовать [[...]]?
|
||||
- Нет, внутри круглых скобок лучше использовать {{ ... }} (фигурные). Пример выше с mimeType показывает правильный путь. Квадратные [[...]] в круглых скобках не разбираются этим прелюдом, зато {{ ... }} спокойно подставятся на следующем шаге.
|
||||
|
||||
Q4: Нужно ли дописывать data:...;base64, вручную?
|
||||
- Нет. Именно для этого и сделан синтаксис img(mime)[[...]]. Вы указываете только MIME (или оставляете пустым), а шаблонизатор добавляет префикс сам.
|
||||
|
||||
Q5: Что если мне нужен не текст data URL, а отрисованное превью?
|
||||
- Блок «ЛОГИ → Data» уже показывает мини‑превью изображений для HTTP‑ответов нод ProviderCall и RawForward, независимо от OUT1.
|
||||
- Если вы хотите «превью прямо в Return», используйте HTML: <img src="img(png)[[...]]"> — потребитель, способный отображать HTML, увидит картинку.
|
||||
|
||||
Диагностика и отладка
|
||||
- Если вы видите «сырую» base64‑строку вместо data URL, проверьте, что используете новый синтаксис img(...)[[...]] или явно дописали префикс вручную.
|
||||
- Если «картинки» не видно в Return, удостоверьтесь, что получатель умеет отображать data URL напрямую. Для HTML‑получателей используйте тег <img>.
|
||||
- Для ответов Gemini в логах панель «Data» показывает превью (мы подаём полные изображения через SSE), а в «Response» структура JSON остаётся читабельной — там триммится только base64, не нарушая остальной структуры.
|
||||
|
||||
Где в коде реализовано
|
||||
- Препроцессор img(mime)[[...]] добавлен в [render_template_simple()](agentui/pipeline/templating.py:191); регулярное выражение и обработчик находятся в [templating.py](agentui/pipeline/templating.py).
|
||||
- Общая логика развёртки [[...]] и {{ ... }} — тоже в [render_template_simple()](agentui/pipeline/templating.py:191).
|
||||
- Подсветка и превью в логах — см. [static/editor.html](static/editor.html).
|
||||
|
||||
Короткая памятка (копируйте в нужные места шаблонов)
|
||||
- По умолчанию PNG:
|
||||
img()[[OUT1]]
|
||||
- Явный JPEG:
|
||||
img(jpeg)[[VAR:OUT.n1.result.candidates.0.content.parts.1.inlineData.data]]
|
||||
- Динамический MIME:
|
||||
img({{ OUT.n1.result.candidates.0.content.parts.1.inlineData.mimeType|default('image/png') }})[[OUT1]]
|
||||
- HTML превью:
|
||||
<img src="img(png)[[OUT1]]" alt="image">
|
||||
|
||||
— — —
|
||||
Приложение B. Что изменилось в парсинге Gemini и [[OUTx]] (2025‑09‑21)
|
||||
|
||||
Коротко
|
||||
- Что поменяли: теперь текст из ответов Gemini собирается из ВСЕХ частей parts[].text во всех candidates, пустые/пробельные строки игнорируются, результат склеивается через "\n".
|
||||
- Где реализовано:
|
||||
- Алгоритм best‑effort для [[OUTx]]/алиасов: [\_best_text_from_outputs()](agentui/pipeline/templating.py:133)
|
||||
- Явная стратегия "gemini" для нод: [\_extract_text_for_out()](agentui/pipeline/executor.py:1590)
|
||||
- Что это даёт: [[OUT1]]/[[OUT2]]… и {{ OUT.nX.response_text }} больше не «пустеют», когда первая часть ответа — "\n". Возвращается весь человекочитаемый текст.
|
||||
|
||||
Что было и что стало
|
||||
- Было: брали только первый элемент parts[0].text → если там "\n", получали пустоту.
|
||||
- Стало: проходим все parts, берём непустые .text (strip) и склеиваем. Если частей нет — работает прежний «глубокий поиск текста» (fallback).
|
||||
|
||||
Примеры
|
||||
- Ответ Gemini (упрощённо):
|
||||
{
|
||||
"candidates": [{
|
||||
"content": { "parts": [{ "text": "\n" }, { "text": "Полезный ответ" }] }
|
||||
}]}
|
||||
- Раньше [[OUT…]] → "" (или "\n")
|
||||
- Теперь [[OUT…]] → "Полезный ответ"
|
||||
|
||||
Альтернатива через пресет/JSONPath (без правок кода)
|
||||
- Если хотите явно контролировать извлечение текста:
|
||||
- strategy="jsonpath"
|
||||
- json_path="candidates.*.content.parts.*.text"
|
||||
- join_sep="\n"
|
||||
- Это эквивалент новой авто‑логики для Gemini и годится, когда нужна строгая предсказуемость.
|
||||
|
||||
Подсказка: RawForward и auto
|
||||
- Для RawForward мы иногда используем «подсказку» провайдера (auto). Сейчас этого достаточно. При желании можно расширить авто‑детекцию для ответов Gemini по ключу "candidates" в [detect_vendor()](agentui/common/vendors.py:8), но это не обязательно для текущей логики [[OUTx]].
|
||||
|
||||
— — —
|
||||
Приложение C. Как правильно писать условия If (шпаргалка)
|
||||
|
||||
Где работает
|
||||
- Узел If выполняет булево выражение и открывает ветку true/false. Исполнение: [IfNode.run()](agentui/pipeline/executor.py:2892)
|
||||
- Парсер/оценка выражений: [eval_condition_expr()](agentui/pipeline/templating.py:382)
|
||||
|
||||
Что поддерживается
|
||||
- Операторы:
|
||||
- Логика: &&, ||, ! (вместо "not" используйте "!")
|
||||
- Сравнения: ==, !=, <, <=, >, >=
|
||||
- Ключевое слово: contains (подстрока для строк или membership для списков)
|
||||
- Скобки: (...)
|
||||
- Макросы внутри выражения:
|
||||
- [[OUT1]], [[OUT:n2.result...]], [[NAME]]
|
||||
- {{ OUT.nX.response_text|default('') }}, {{ params.temperature|default(0.7) }}
|
||||
- Строковые литералы: "..." или '...' (следите за закрывающей кавычкой)
|
||||
|
||||
Семантика contains простым языком
|
||||
- Строки: A contains B → строка B входит в строку A (по подстроке).
|
||||
- Списки/множества: A contains B → элемент B присутствует в коллекции A.
|
||||
|
||||
Частые шаблоны (скопируйте)
|
||||
- Проверка фразы в тексте провайдера:
|
||||
[[OUT3]] contains "Stream failed to"
|
||||
- Объединение условий:
|
||||
([[OUT3]] contains "Stream failed to") || ([[OUT3]] contains "gemini-2.5-pro")
|
||||
- Числовые сравнения с запасным значением:
|
||||
{{ params.temperature|default(0.7) }} >= 0.3 && {{ params.temperature|default(0.7) }} <= 1
|
||||
- Проверка «не пусто»:
|
||||
{{ OUT.n2.response_text|default('') }} != ""
|
||||
- Негативная проверка:
|
||||
!([[OUT3]] contains "error")
|
||||
- Сложная проверка с несколькими ветками:
|
||||
({{ params.max_tokens|default(256) }} >= 128) && !([[OUT1]] contains "retry")
|
||||
|
||||
Советы по устойчивости
|
||||
- Используйте |default(...) у {{ ... }}, чтобы не падать на None/пустых значениях.
|
||||
- Для длинных/непредсказуемых строк проверяйте наличие ключевого фрагмента через contains.
|
||||
- Оборачивайте группы условий в (...) — так легче читать и поддерживать.
|
||||
- Внимание к кавычкам: "..." и '...' должны закрываться; это самая частая причина синтаксических ошибок.
|
||||
|
||||
Антишаблоны (чего избегать)
|
||||
- Незакрытые кавычки в строковых литералах.
|
||||
- Путаница с not: используйте "!" (а не слово not).
|
||||
- Попытка вызывать произвольные функции — в If разрешён только contains(a, b) (под капотом), всё остальное запрещено.
|
||||
|
||||
Проверка на практике
|
||||
- Пример из рабочего пайплайна (идея):
|
||||
If.expr: (([[OUT3]] contains "Stream failed to") || ([[OUT3]] contains "gemini-2.5-pro"))
|
||||
True‑ветка → Return "[[OUT3]]"
|
||||
False‑ветка → RawForward или другой ProviderCall
|
||||
|
||||
Где ещё посмотреть
|
||||
- Развёртка макросов [[...]] и {{ ... }}: [render_template_simple()](agentui/pipeline/templating.py:196)
|
||||
- Логи If с развернутым выражением (для отладки): [IfNode.run()](agentui/pipeline/executor.py:2892)
|
||||
|
||||
BIN
favicon_io_saya/android-chrome-192x192.png
Normal file
|
After Width: | Height: | Size: 72 KiB |
BIN
favicon_io_saya/android-chrome-512x512.png
Normal file
|
After Width: | Height: | Size: 337 KiB |
BIN
favicon_io_saya/apple-touch-icon.png
Normal file
|
After Width: | Height: | Size: 65 KiB |
BIN
favicon_io_saya/favicon-16x16.png
Normal file
|
After Width: | Height: | Size: 973 B |
BIN
favicon_io_saya/favicon-32x32.png
Normal file
|
After Width: | Height: | Size: 3.1 KiB |
BIN
favicon_io_saya/favicon.ico
Normal file
|
After Width: | Height: | Size: 15 KiB |
BIN
favicon_io_saya/saya1.png
Normal file
|
After Width: | Height: | Size: 7.6 KiB |
1
favicon_io_saya/site.webmanifest
Normal file
@@ -0,0 +1 @@
|
||||
{"name":"","short_name":"","icons":[{"src":"/android-chrome-192x192.png","sizes":"192x192","type":"image/png"},{"src":"/android-chrome-512x512.png","sizes":"512x512","type":"image/png"}],"theme_color":"#ffffff","background_color":"#ffffff","display":"standalone"}
|
||||
289
pipeline.json
@@ -6,147 +6,32 @@
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"http_timeout_sec": 999.0,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfipb98aywtx6jepd5",
|
||||
"name": "ввв",
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "ввв",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "RawForward",
|
||||
"pos_x": 441,
|
||||
"pos_y": 354,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{}",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n5.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 652,
|
||||
"pos_y": 46,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[MyOpenAiKey]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": 500,\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://proxy.malepreg.lol/proxy/aws/claude",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[Clod]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"output-128k-2025-02-19\"}",
|
||||
"template": "{\n \"model\": \"claude-opus-4-20250514\",\n [[PROMPT]],\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('enabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(3000) }}\n }\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfmstojw",
|
||||
"name": "Great assustant",
|
||||
"role": "system",
|
||||
"prompt": "You are Great assustant",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
},
|
||||
{
|
||||
"id": "bmfchnynm",
|
||||
"name": "Сделай [[OUT1]] красивее",
|
||||
"role": "user",
|
||||
"prompt": "Сделай [[OUT1]] красивее",
|
||||
"enabled": true,
|
||||
"order": 1
|
||||
}
|
||||
],
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n1.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 654,
|
||||
"pos_y": 566,
|
||||
"config": {
|
||||
"provider": "openai",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[MyOpenAiKey]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": 500,\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfchn1hq",
|
||||
"name": "Сделай [[OUT1]] красивее",
|
||||
"role": "user",
|
||||
"prompt": "Сделай [[OUT1]] красивее",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n1.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "Return",
|
||||
"pos_x": 1193,
|
||||
"pos_y": 314,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT6]] [[Test]]",
|
||||
"_origId": "n4"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n7.true"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": 171,
|
||||
"pos_y": 487,
|
||||
"pos_x": 12,
|
||||
"pos_y": 780,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
@@ -173,18 +58,49 @@
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 923,
|
||||
"pos_y": 345,
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 1344,
|
||||
"pos_y": 756,
|
||||
"config": {
|
||||
"provider": "openai",
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT7]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n7.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 552,
|
||||
"pos_y": 696,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3",
|
||||
"while_expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"ignore_errors": false,
|
||||
"while_max_iters": 50
|
||||
},
|
||||
"in": {
|
||||
"depends": "n5.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 792,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[MyOpenAiKey]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": 500,\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
"headers": "{\"Authorization\":\"[[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
@@ -192,6 +108,12 @@
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
@@ -201,59 +123,76 @@
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfmk7g4a",
|
||||
"name": "New Block",
|
||||
"role": "system",
|
||||
"prompt": "",
|
||||
"id": "bmfwy94ev",
|
||||
"name": "Твой ответ недостаточно хорош",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT3]]\n```\nнедостаточно хорош, при его написании ты не следовал инструкциям. переделай исходя из инструкций, найди недостатки разобрав каждое действие оценив его логичность и следование истории от 0до10, перепиши эти моменты на нормальные.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
},
|
||||
{
|
||||
"id": "bmfdyczbd",
|
||||
"name": "Объедени [[OUT3]], [[OUT4]] сделай более красиво.",
|
||||
"role": "user",
|
||||
"prompt": "Объедени [ [[OUT3]], [[OUT2]] ] сделай более красиво. напиши слово \"Красиво\" в конце.",
|
||||
"enabled": true,
|
||||
"order": 1
|
||||
},
|
||||
{
|
||||
"id": "bmfh98jkh",
|
||||
"name": "New Block1",
|
||||
"role": "system",
|
||||
"prompt": "1",
|
||||
"enabled": true,
|
||||
"order": 2
|
||||
},
|
||||
{
|
||||
"id": "bmfmk74yz",
|
||||
"name": "New Block",
|
||||
"role": "assistant",
|
||||
"prompt": "fuf",
|
||||
"enabled": true,
|
||||
"order": 3
|
||||
}
|
||||
],
|
||||
"_origId": "n6"
|
||||
"_origId": "n4",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1",
|
||||
"while_expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"ignore_errors": false,
|
||||
"while_max_iters": 50
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n2.done",
|
||||
"n3.done",
|
||||
"n7.false"
|
||||
]
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n7",
|
||||
"type": "If",
|
||||
"pos_x": 1311,
|
||||
"pos_y": 566,
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 1080,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"expr": "[[OUT6]] contains \"Красиво\"",
|
||||
"_origId": "n7"
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[MyOpenAiKey]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://proxy.malepreg.lol/proxy/aws/claude",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"igrovik\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"claude-opus-4-20250514\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfzvzpl7",
|
||||
"name": "Может содержать такие конструкции",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT4]]\n```\nМожет содержать такие конструкции:\n**'Not X, but Y'** narrative structure. This includes any and all variations of stating what something *is not* in order to emphasize what it *is*. Нужно заменить места на нормальный нарратив.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n7",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1",
|
||||
"claude_no_system": true,
|
||||
"while_expr": "([[OUT7]] contains \"Stream failed to\") || ([[OUT7]] contains \"gemini-2.5-pro\")",
|
||||
"ignore_errors": false,
|
||||
"while_max_iters": 50
|
||||
},
|
||||
"in": {
|
||||
"depends": "n6.done"
|
||||
"depends": "n4.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
237
presets/123123123.json
Normal file
@@ -0,0 +1,237 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": 12,
|
||||
"pos_y": 780,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 1344,
|
||||
"pos_y": 756,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT7]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n8.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 564,
|
||||
"pos_y": 660,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n5.done",
|
||||
"n1.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 564,
|
||||
"pos_y": 888,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 792,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfwy94ev",
|
||||
"name": "Твой ответ недостаточно хорош",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT3]]\n```\nнедостаточно хорош, при его написании ты не следовал инструкциям. переделай исходя из инструкций, найди недостатк1.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n4",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.true",
|
||||
"n1.false"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "If",
|
||||
"pos_x": 792,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT4]] contains \"Stream failed to\") || ([[OUT4]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n6"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n4.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n7",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 1068,
|
||||
"pos_y": 540,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfzvzpl7",
|
||||
"name": "Может содержать такие конструкции",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT4]]\n```\nМожет содержать такие конструкции:\n**'Not X, but Y'** narrative structure. This includes any and all variations of stating what something *is not* in order to emphasize what it *is*. Нужно заменить места на нормальный нарратив.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n7",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.false",
|
||||
"n8.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n8",
|
||||
"type": "If",
|
||||
"pos_x": 1068,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT7]] contains \"Stream failed to\") || ([[OUT7]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n8"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n7.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
191
presets/imgtests.json
Normal file
@@ -0,0 +1,191 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": -603,
|
||||
"pos_y": 637,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 509,
|
||||
"pos_y": 459,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT3]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n1.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 45,
|
||||
"pos_y": 750,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n1.true"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 344,
|
||||
"pos_y": 730,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": -185.88888888888889,
|
||||
"pos_y": 523,
|
||||
"config": {
|
||||
"provider": "gemini_image",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/gemini-2.5-flash-image-preview:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"gemini-2.5-flash-image-preview\",\n [[OUT3]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [],
|
||||
"_origId": "n4"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n6.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": -391,
|
||||
"pos_y": 648,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[VAR:incoming.json.contents]],\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfuw6ayo",
|
||||
"name": "Создание промпта",
|
||||
"role": "user",
|
||||
"prompt": "Создай промпт для генерации изображения исходя из последнего действие {{user}}. Промпт должен быть лаконичный, простенький, без сложных формулировок. В ответе не пиши ничего кроме промпта.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n6"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n5.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
171
presets/prepprst.json
Normal file
@@ -0,0 +1,171 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": -125,
|
||||
"pos_y": 561,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 954,
|
||||
"pos_y": 564,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT4]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n6.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 74,
|
||||
"pos_y": 450.5,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n5.done",
|
||||
"n1.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 75,
|
||||
"pos_y": 909,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 663,
|
||||
"pos_y": 335,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfwy94ev",
|
||||
"name": "Твой ответ недостаточно хорош",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT3]]\n```\nнедостаточно хорош, при его написании ты не следовал инструкциям. переделай исходя из инструкций, найди недостатки.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n4",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.true",
|
||||
"n1.false"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "If",
|
||||
"pos_x": 675,
|
||||
"pos_y": 882.25,
|
||||
"config": {
|
||||
"expr": "([[OUT4]] contains \"Stream failed to\") || ([[OUT4]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n6"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n4.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
105
presets/retry.json
Normal file
@@ -0,0 +1,105 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": -125,
|
||||
"pos_y": 561,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 507,
|
||||
"pos_y": 459,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT3]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n1.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 114,
|
||||
"pos_y": 425,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n5.done",
|
||||
"n1.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 344,
|
||||
"pos_y": 730,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -40,7 +40,7 @@
|
||||
"pos_x": 652,
|
||||
"pos_y": 46,
|
||||
"config": {
|
||||
"provider": "claude",
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
@@ -59,6 +59,12 @@
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[Clod]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"output-128k-2025-02-19\"}",
|
||||
"template": "{\n \"model\": \"claude-opus-4-20250514\",\n [[PROMPT]],\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('enabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(3000) }}\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
@@ -77,14 +83,6 @@
|
||||
"prompt": "Сделай [[OUT1]] красивее",
|
||||
"enabled": true,
|
||||
"order": 1
|
||||
},
|
||||
{
|
||||
"id": "bmfmssvy8",
|
||||
"name": "New Block",
|
||||
"role": "assistant",
|
||||
"prompt": "Sure",
|
||||
"enabled": true,
|
||||
"order": 2
|
||||
}
|
||||
],
|
||||
"_origId": "n2"
|
||||
@@ -118,6 +116,12 @@
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
@@ -205,6 +209,12 @@
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
|
||||
171
presets/testtesttt.json
Normal file
@@ -0,0 +1,171 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": -125,
|
||||
"pos_y": 561,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 954,
|
||||
"pos_y": 564,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT4]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n6.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 72,
|
||||
"pos_y": 444,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n5.done",
|
||||
"n1.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 75,
|
||||
"pos_y": 909,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 663,
|
||||
"pos_y": 335,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfwy94ev",
|
||||
"name": "Твой ответ недостаточно хорош",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT3]]\n```\nнедостаточно хорош, при его написании ты не следовал инструкциям. переделай исходя из инструкций, найди недостатк.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n4",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.true",
|
||||
"n1.false"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "If",
|
||||
"pos_x": 675,
|
||||
"pos_y": 882.25,
|
||||
"config": {
|
||||
"expr": "([[OUT4]] contains \"Stream failed to\") || ([[OUT4]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n6"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n4.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
285
presets/tttttt.json
Normal file
@@ -0,0 +1,285 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": 12,
|
||||
"pos_y": 780,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 1344,
|
||||
"pos_y": 756,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT7]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n8.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 588,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n5.done",
|
||||
"n1.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 564,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 792,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"provider": "openai",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"[[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfwy94ev",
|
||||
"name": "Твой ответ недостаточно хорош",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT3]]\n```\nнедостаточно хорош, при его написании ты не следовал инструкциям. переделай исходя из инструкций, найди недостатк1.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n4",
|
||||
"prompt_combine": "[[VAR:incoming.json.messages]] & [[PROMPT]]"
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.true",
|
||||
"n1.false"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "If",
|
||||
"pos_x": 792,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT4]] contains \"Stream failed to\") || ([[OUT4]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n6"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n4.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n7",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 1056,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"provider": "claude",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://proxy.malepreg.lol/proxy/aws/claude",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"igrovik\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"claude-opus-4-20250514\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfzvzpl7",
|
||||
"name": "Может содержать такие конструкции",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT4]]\n```\nМожет содержать такие конструкции:\n**'Not X, but Y'** narrative structure. This includes any and all variations of stating what something *is not* in order to emphasize what it *is*. Нужно заменить места на нормальный нарратив.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n7",
|
||||
"prompt_combine": "[[VAR:incoming.json.messages]] & [[PROMPT]]",
|
||||
"claude_no_system": true
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.false",
|
||||
"n8.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n8",
|
||||
"type": "If",
|
||||
"pos_x": 1068,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT7]] contains \"Stream failed to\") || ([[OUT7]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n8"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n7.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n9",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 1104,
|
||||
"pos_y": 456,
|
||||
"config": {
|
||||
"provider": "claude",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://proxy.malepreg.lol/proxy/aws/claude",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"igrovik\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"claude-opus-4-20250514\",\n [[PROMPT]],\n \"top_p\": 1,\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmg26nusx",
|
||||
"name": "New Block",
|
||||
"role": "user",
|
||||
"prompt": "Hey",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n9"
|
||||
},
|
||||
"in": {}
|
||||
}
|
||||
]
|
||||
}
|
||||
247
presets/tttttt1.json
Normal file
@@ -0,0 +1,247 @@
|
||||
{
|
||||
"id": "pipeline_editor",
|
||||
"name": "Edited Pipeline",
|
||||
"parallel_limit": 8,
|
||||
"loop_mode": "iterative",
|
||||
"loop_max_iters": 1000,
|
||||
"loop_time_budget_ms": 999999999999,
|
||||
"clear_var_store": true,
|
||||
"http_timeout_sec": 999,
|
||||
"text_extract_strategy": "auto",
|
||||
"text_extract_json_path": "",
|
||||
"text_join_sep": "\n",
|
||||
"text_extract_presets": [
|
||||
{
|
||||
"id": "pmfqonx6fvcubc09k4ep",
|
||||
"name": "candidates.0.content.parts.1.inlineData.data",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData.data",
|
||||
"join_sep": "\n"
|
||||
},
|
||||
{
|
||||
"id": "pmfqrelw6wu9rutnzk1",
|
||||
"name": "candidates.0.content.parts.1.inlineData",
|
||||
"strategy": "jsonpath",
|
||||
"json_path": "candidates.0.content.parts.1.inlineData",
|
||||
"join_sep": "\n"
|
||||
}
|
||||
],
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n5",
|
||||
"type": "SetVars",
|
||||
"pos_x": 12,
|
||||
"pos_y": 780,
|
||||
"config": {
|
||||
"variables": [
|
||||
{
|
||||
"id": "vmfi99ftc",
|
||||
"name": "Clod",
|
||||
"mode": "string",
|
||||
"value": "igrovik"
|
||||
},
|
||||
{
|
||||
"id": "vmfi99gjw",
|
||||
"name": "MyOpenAiKey",
|
||||
"mode": "string",
|
||||
"value": "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"
|
||||
},
|
||||
{
|
||||
"id": "vmfjkn09i",
|
||||
"name": "NAMETest",
|
||||
"mode": "expr",
|
||||
"value": "128 + 64"
|
||||
}
|
||||
],
|
||||
"_origId": "n5"
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "Return",
|
||||
"pos_x": 1344,
|
||||
"pos_y": 756,
|
||||
"config": {
|
||||
"target_format": "auto",
|
||||
"text_template": "[[OUT7]]",
|
||||
"_origId": "n2"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n8.false"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n3",
|
||||
"type": "RawForward",
|
||||
"pos_x": 588,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"passthrough_headers": true,
|
||||
"extra_headers": "{\"connection\": \"close\"}",
|
||||
"_origId": "n3",
|
||||
"while_expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"ignore_errors": false,
|
||||
"while_max_iters": 50
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n5.done",
|
||||
"n1.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "If",
|
||||
"pos_x": 600,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n1"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n3.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n4",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 792,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"[[VAR:incoming.headers.authorization]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://api.anthropic.com",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"[[VAR:incoming.headers.x-api-key]]\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfwy94ev",
|
||||
"name": "Твой ответ недостаточно хорош",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT3]]\n```\nнедостаточно хорош, при его написании ты не следовал инструкциям. переделай исходя из инструкций, найди недостатки разобрав каждое действие оценив его логичность и следование истории от 0до10, перепиши эти моменты на нормальные.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n4",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1",
|
||||
"while_expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"ignore_errors": false,
|
||||
"while_max_iters": 50
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.true",
|
||||
"n1.false"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n6",
|
||||
"type": "If",
|
||||
"pos_x": 852,
|
||||
"pos_y": 960,
|
||||
"config": {
|
||||
"expr": "([[OUT4]] contains \"Stream failed to\") || ([[OUT4]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n6"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n4.done"
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n7",
|
||||
"type": "ProviderCall",
|
||||
"pos_x": 1080,
|
||||
"pos_y": 624,
|
||||
"config": {
|
||||
"provider": "gemini",
|
||||
"provider_configs": {
|
||||
"openai": {
|
||||
"base_url": "https://api.openai.com",
|
||||
"endpoint": "/v1/chat/completions",
|
||||
"headers": "{\"Authorization\":\"Bearer [[MyOpenAiKey]]\"}",
|
||||
"template": "{\n \"model\": \"gpt-5-chat-latest\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_completion_tokens\": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},\n \"presence_penalty\": {{ incoming.json.presence_penalty|default(0) }},\n \"frequency_penalty\": {{ incoming.json.frequency_penalty|default(0) }},\n \"stop\": {{ incoming.json.stop|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }}\n}"
|
||||
},
|
||||
"gemini": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]",
|
||||
"headers": "{}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]],\n \"safetySettings\": {{ incoming.json.safetySettings|default([]) }},\n \"generationConfig\": {\n \"temperature\": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},\n \"topP\": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},\n \"maxOutputTokens\": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},\n \"stopSequences\": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},\n \"candidateCount\": {{ incoming.json.generationConfig.candidateCount|default(1) }},\n \"thinkingConfig\": {\n \"includeThoughts\": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},\n \"thinkingBudget\": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}\n }\n }\n}"
|
||||
},
|
||||
"gemini_image": {
|
||||
"base_url": "https://generativelanguage.googleapis.com",
|
||||
"endpoint": "/v1beta/models/{{ model }}:generateContent",
|
||||
"headers": "{\"x-goog-api-key\":\"[[VAR:incoming.api_keys.key]]\"}",
|
||||
"template": "{\n \"model\": \"{{ model }}\",\n [[PROMPT]]\n}"
|
||||
},
|
||||
"claude": {
|
||||
"base_url": "https://proxy.malepreg.lol/proxy/aws/claude",
|
||||
"endpoint": "/v1/messages",
|
||||
"headers": "{\"x-api-key\":\"igrovik\",\"anthropic-version\":\"2023-06-01\",\"anthropic-beta\":\"[[VAR:incoming.headers.anthropic-beta]]\"}",
|
||||
"template": "{\n \"model\": \"claude-opus-4-20250514\",\n [[PROMPT]],\n \"temperature\": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},\n \"top_p\": {{ incoming.json.top_p|default(params.top_p|default(1)) }},\n \"max_tokens\": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},\n \"stop_sequences\": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},\n \"stream\": {{ incoming.json.stream|default(false) }},\n \"thinking\": {\n \"type\": \"{{ incoming.json.thinking.type|default('disabled') }}\",\n \"budget_tokens\": {{ incoming.json.thinking.budget_tokens|default(0) }}\n },\n \"anthropic_version\": \"{{ anthropic_version|default('2023-06-01') }}\"\n}"
|
||||
}
|
||||
},
|
||||
"blocks": [
|
||||
{
|
||||
"id": "bmfzvzpl7",
|
||||
"name": "Может содержать такие конструкции",
|
||||
"role": "user",
|
||||
"prompt": "Твой ответ:\n```\n[[OUT4]]\n```\nМожет содержать такие конструкции:\n**'Not X, but Y'** narrative structure. This includes any and all variations of stating what something *is not* in order to emphasize what it *is*. Нужно заменить места на нормальный нарратив.",
|
||||
"enabled": true,
|
||||
"order": 0
|
||||
}
|
||||
],
|
||||
"_origId": "n7",
|
||||
"prompt_combine": "[[VAR:incoming.json.contents]] & [[PROMPT]]@pos=-1",
|
||||
"claude_no_system": true,
|
||||
"while_expr": "([[OUT3]] contains \"Stream failed to\") || ([[OUT3]] contains \"gemini-2.5-pro\")",
|
||||
"ignore_errors": false,
|
||||
"while_max_iters": 50
|
||||
},
|
||||
"in": {
|
||||
"depends": [
|
||||
"n6.false",
|
||||
"n8.true"
|
||||
]
|
||||
}
|
||||
},
|
||||
{
|
||||
"id": "n8",
|
||||
"type": "If",
|
||||
"pos_x": 1068,
|
||||
"pos_y": 876,
|
||||
"config": {
|
||||
"expr": "([[OUT7]] contains \"Stream failed to\") || ([[OUT7]] contains \"gemini-2.5-pro\")",
|
||||
"_origId": "n8"
|
||||
},
|
||||
"in": {
|
||||
"depends": "n7.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -1,8 +1,8 @@
|
||||
fastapi==0.112.2
|
||||
fastapi==0.115.2
|
||||
uvicorn==0.30.6
|
||||
pydantic==2.8.2
|
||||
httpx==0.27.0
|
||||
starlette==0.38.2
|
||||
httpx[socks]==0.27.0
|
||||
|
||||
starlette==0.40.0
|
||||
|
||||
brotlicffi
|
||||
brotli
|
||||
@@ -1,27 +1,51 @@
|
||||
@echo off
|
||||
setlocal
|
||||
chcp 65001 >NUL
|
||||
set PORT=7860
|
||||
echo Installing dependencies...
|
||||
python -m pip install --upgrade pip
|
||||
|
||||
REM -------- Config --------
|
||||
if "%PORT%"=="" set PORT=7860
|
||||
if "%HOST%"=="" set HOST=127.0.0.1
|
||||
REM ------------------------
|
||||
|
||||
echo [НадTavern] Preparing virtual environment...
|
||||
|
||||
REM Pick Python launcher
|
||||
where py >NUL 2>&1
|
||||
if %ERRORLEVEL%==0 (
|
||||
set PY=py
|
||||
) else (
|
||||
set PY=python
|
||||
)
|
||||
|
||||
REM Create venv if missing
|
||||
if not exist ".venv\Scripts\python.exe" (
|
||||
%PY% -m venv .venv
|
||||
if errorlevel 1 goto :fail
|
||||
)
|
||||
|
||||
set "VENV_PY=.venv\Scripts\python.exe"
|
||||
|
||||
echo [НадTavern] Upgrading pip...
|
||||
"%VENV_PY%" -m pip install --upgrade pip
|
||||
if errorlevel 1 goto :fail
|
||||
pip install -r requirements.txt
|
||||
|
||||
echo [НадTavern] Installing dependencies from requirements.txt...
|
||||
"%VENV_PY%" -m pip install -r requirements.txt
|
||||
if errorlevel 1 goto :fail
|
||||
echo Starting НадTavern on http://127.0.0.1:%PORT%/
|
||||
|
||||
echo [НадTavern] Starting on http://%HOST%:%PORT%/
|
||||
timeout /t 1 /nobreak >NUL
|
||||
start "" "http://127.0.0.1:%PORT%/ui/editor.html"
|
||||
python -m uvicorn agentui.api.server:app --host 127.0.0.1 --port %PORT% --log-level info
|
||||
start "" "http://%HOST%:%PORT%/ui/editor.html"
|
||||
|
||||
"%VENV_PY%" -m uvicorn agentui.api.server:app --host %HOST% --port %PORT% --log-level info
|
||||
if errorlevel 1 goto :fail
|
||||
goto :end
|
||||
|
||||
:fail
|
||||
echo.
|
||||
echo Server failed with errorlevel %errorlevel%.
|
||||
echo [НадTavern] Server failed with errorlevel %errorlevel%.
|
||||
echo Check the console output above and the file agentui.log for details.
|
||||
pause
|
||||
|
||||
:end
|
||||
pause
|
||||
endlocal
|
||||
|
||||
|
||||
|
||||
@@ -1,10 +1,11 @@
|
||||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
# НадTavern Linux launcher
|
||||
# НадTavern Linux/macOS launcher with local .venv bootstrap
|
||||
# Usage:
|
||||
# chmod +x ./run_agentui.sh
|
||||
# ./run_agentui.sh
|
||||
# Optional env: HOST=0.0.0.0 PORT=7860
|
||||
|
||||
# Go to repo root (script location)
|
||||
cd "$(dirname "$0")"
|
||||
@@ -12,18 +13,28 @@ cd "$(dirname "$0")"
|
||||
PORT="${PORT:-7860}"
|
||||
HOST="${HOST:-127.0.0.1}"
|
||||
|
||||
echo "Installing dependencies..."
|
||||
|
||||
# Pick python
|
||||
if command -v python3 >/dev/null 2>&1; then
|
||||
PY=python3
|
||||
else
|
||||
PY=python
|
||||
fi
|
||||
|
||||
"$PY" -m pip install --upgrade pip
|
||||
"$PY" -m pip install -r requirements.txt
|
||||
# Create venv if missing
|
||||
if [ ! -f ".venv/bin/python" ]; then
|
||||
echo "[НадTavern] Creating .venv ..."
|
||||
"$PY" -m venv .venv
|
||||
fi
|
||||
|
||||
echo "Starting НадTavern on http://$HOST:$PORT/"
|
||||
VENV_PY=".venv/bin/python"
|
||||
|
||||
echo "[НадTavern] Upgrading pip ..."
|
||||
"$VENV_PY" -m pip install --upgrade pip
|
||||
|
||||
echo "[НадTavern] Installing deps from requirements.txt ..."
|
||||
"$VENV_PY" -m pip install -r requirements.txt
|
||||
|
||||
echo "[НадTavern] Starting on http://$HOST:$PORT/"
|
||||
|
||||
# Try to open UI editor in default browser (non-fatal if fails)
|
||||
if command -v xdg-open >/dev/null 2>&1; then
|
||||
@@ -32,4 +43,4 @@ elif command -v open >/dev/null 2>&1; then
|
||||
open "http://$HOST:$PORT/ui/editor.html" >/dev/null 2>&1 || true
|
||||
fi
|
||||
|
||||
exec "$PY" -m uvicorn agentui.api.server:app --host "$HOST" --port "$PORT" --log-level info
|
||||
exec "$VENV_PY" -m uvicorn agentui.api.server:app --host "$HOST" --port "$PORT" --log-level info
|
||||
@@ -15,31 +15,38 @@ html, body, button, input, select, textarea, code, pre, a, .chip-btn, .group-tit
|
||||
--node: #0e1116;
|
||||
--node-border: #334155;
|
||||
--node-selected: #1f2937;
|
||||
|
||||
/* Базовый цвет проводов по умолчанию */
|
||||
--connector: #7aa2f7;
|
||||
--connector-muted: #3b82f6;
|
||||
|
||||
/* Неброские цвета для разных типов/веток */
|
||||
--wire-true: #34d399; /* мягкий зелёный для If:true */
|
||||
--wire-false: #94a3b8; /* сланцево‑серый для If:false */
|
||||
--wire-provider: #5b86e5; /* приглушённый синий */
|
||||
--wire-raw: #8b7de6; /* мягкий фиолетовый */
|
||||
--wire-setvars: #4fbfa0; /* приглушённая мята */
|
||||
--wire-return: #93a9d1; /* холодный серо‑синий */
|
||||
|
||||
/* DRY tokens: unified shadows and transitions */
|
||||
--ring3-22-shadow: 0 0 0 3px rgba(96,165,250,.22), 0 4px 10px rgba(0,0,0,.35);
|
||||
--ring3-20-shadow: 0 0 0 3px rgba(96,165,250,.20), 0 4px 10px rgba(0,0,0,.35);
|
||||
--ring2-20-shadow: 0 0 0 2px rgba(96,165,250,.20), 0 2px 6px rgba(0,0,0,.35);
|
||||
--focus-ring3-20: 0 0 0 3px rgba(96,165,250,.20);
|
||||
--focus-ring3-22: 0 0 0 3px rgba(96,165,250,.22);
|
||||
--tr-base: border-color .12s ease, box-shadow .12s ease, background-color .12s ease, color .12s ease;
|
||||
--tr-pop: transform .12s ease;
|
||||
--tr-pop-fast: transform .08s ease;
|
||||
}
|
||||
html, body {
|
||||
height: 100%;
|
||||
overflow: hidden; /* убираем общие скролл-бары страницы, чтобы не перекрывать правую стрелку */
|
||||
}
|
||||
|
||||
/* Глобальные контейнеры и скроллы */
|
||||
html, body {
|
||||
height: 100%;
|
||||
overflow: hidden; /* убираем общие скролл-бары страницы */
|
||||
}
|
||||
#container {
|
||||
position: relative; /* якорь для абсолютных стрелок-переключателей */
|
||||
}
|
||||
|
||||
/* Глобальные контейнеры и скроллы */
|
||||
html, body {
|
||||
height: 100%;
|
||||
overflow: hidden; /* убираем общие скролл-бары страницы */
|
||||
}
|
||||
#container {
|
||||
position: relative; /* якорь для абсолютных стрелок-переключателей */
|
||||
}
|
||||
/* Grid areas to hard-pin layout regardless of hidden panels or absolute children */
|
||||
#container {
|
||||
display: grid;
|
||||
@@ -77,7 +84,36 @@ html, body {
|
||||
border: 1px solid var(--node-border);
|
||||
color: #e5e7eb;
|
||||
border-radius: 12px 12px 0 0;
|
||||
padding: 6px 10px;
|
||||
padding: 4px 8px; /* компактнее заголовок */
|
||||
font-size: 12px; /* компактнее шрифт заголовка */
|
||||
line-height: 1.2;
|
||||
}
|
||||
/* Иконка типа ноды в заголовке (монохромная, спокойная) */
|
||||
.drawflow .drawflow-node .title-box .node-ico {
|
||||
display: inline-block;
|
||||
width: 14px;
|
||||
height: 14px;
|
||||
margin-right: 6px;
|
||||
vertical-align: -2px;
|
||||
background-size: 14px 14px;
|
||||
background-repeat: no-repeat;
|
||||
filter: opacity(.9);
|
||||
}
|
||||
/* SVG-иконки по типам (цвета под стиль проекта) */
|
||||
.drawflow .drawflow-node .title-box .node-ico-If {
|
||||
background-image: url("data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='14' height='14' viewBox='0 0 24 24' fill='none' stroke='%2394a3b8' stroke-width='2' stroke-linecap='round' stroke-linejoin='round'><path d='M6 4v6a4 4 0 0 0 4 4h4'/><polyline points='14 14 18 10 14 6'/></svg>");
|
||||
}
|
||||
.drawflow .drawflow-node .title-box .node-ico-ProviderCall {
|
||||
background-image: url("data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='14' height='14' viewBox='0 0 24 24' fill='none' stroke='%235b86e5' stroke-width='2' stroke-linecap='round' stroke-linejoin='round'><path d='M3 15a4 4 0 0 0 4 4h10a4 4 0 0 0 4-4'/><path d='M7 19V5a4 4 0 0 1 4-4h2a4 4 0 0 1 4 4v14'/></svg>");
|
||||
}
|
||||
.drawflow .drawflow-node .title-box .node-ico-RawForward {
|
||||
background-image: url("data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='14' height='14' viewBox='0 0 24 24' fill='none' stroke='%238b7de6' stroke-width='2' stroke-linecap='round' stroke-linejoin='round'><polyline points='5 12 19 12'/><polyline points='12 5 19 12 12 19'/></svg>");
|
||||
}
|
||||
.drawflow .drawflow-node .title-box .node-ico-SetVars {
|
||||
background-image: url("data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='14' height='14' viewBox='0 0 24 24' fill='none' stroke='%234fbfa0' stroke-width='2' stroke-linecap='round' stroke-linejoin='round'><circle cx='12' cy='12' r='3'/><path d='M19.4 15a1.65 1.65 0 0 0 .33 1.82l.06.06a2 2 0 1 1-2.83 2.83l-.06-.06A1.65 1.65 0 0 0 15 19.4a1.65 1.65 0 0 0-1 .6l-.09.1a2 2 0 1 1-3.2 0l-.09-.1a1.65 1.65 0 0 0-1-.6 1.65 1.65 0 0 0-1.82.33l-.06.06a2 2 0 1 1-2.83-2.83l.06-.06A1.65 1.65 0 0 0 4.6 15a1.65 1.65 0 0 0-.6-1l-.1-.09a2 2 0 1 1 0-3.2l.1-.09a1.65 1.65 0 0 0 .6-1 1.65 1.65 0 0 0-.33-1.82l-.06-.06A2 2 0 1 1 6.94 2.6l.06.06A1.65 1.65 0 0 0 8 3.6a1.65 1.65 0 0 0 1-.6l.09-.1a2 2 0 1 1 3.2 0l.09.1a1.65 1.65 0 0 0 1 .6 1.65 1.65 0 0 0 1.82-.33l.06-.06a2 2 0 1 1 2.83 2.83l-.06.06a1.65 1.65 0 0 0-.33 1.82 1.65 1.65 0 0 0 .6 1l.1.09a2 2 0 1 1 0 3.2l-.1.09a1.65 1.65 0 0 0-.6 1z'/></svg>");
|
||||
}
|
||||
.drawflow .drawflow-node .title-box .node-ico-Return {
|
||||
background-image: url("data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='14' height='14' viewBox='0 0 24 24' fill='none' stroke='%2393a9d1' stroke-width='2' stroke-linecap='round' stroke-linejoin='round'><path d='M9 10l-5 5 5 5'/><path d='M20 4v7a4 4 0 0 1-4 4H4'/></svg>");
|
||||
}
|
||||
|
||||
.drawflow .drawflow-node .box {
|
||||
@@ -87,11 +123,28 @@ html, body {
|
||||
color: #e5e7eb;
|
||||
border-radius: 0 0 12px 12px;
|
||||
overflow: hidden; /* не даём контенту вылезать за края */
|
||||
font-size: 11px; /* компактнее содержимое */
|
||||
line-height: 1.25;
|
||||
}
|
||||
/* Контент превью внутри .box: можем скрывать его в LOD, не ломая геометрию ноды */
|
||||
/* Контент превью внутри .box: можем скрывать его в LOD, не меняя коробку ноды */
|
||||
.drawflow .drawflow-node .node-preview {
|
||||
pointer-events: none;
|
||||
pointer-events: auto; /* разрешаем клики по summary (<details>) */
|
||||
opacity: .85;
|
||||
font-size: 10.5px; /* мелкий общий текст превью */
|
||||
}
|
||||
/* На самом канвасе поля превью недоступны для редактирования/клика */
|
||||
.drawflow .drawflow-node .node-preview input,
|
||||
.drawflow .drawflow-node .node-preview textarea {
|
||||
pointer-events: none;
|
||||
}
|
||||
.drawflow .drawflow-node .node-preview label {
|
||||
font-size: 10px;
|
||||
margin: 4px 0 2px;
|
||||
}
|
||||
/* Адресные поля читаемые «обычным» кеглем */
|
||||
.drawflow .drawflow-node .node-preview .np-url,
|
||||
.drawflow .drawflow-node .node-preview .np-endpoint {
|
||||
font-size: 12px !important;
|
||||
}
|
||||
|
||||
.drawflow .drawflow-node .box textarea,
|
||||
@@ -104,6 +157,9 @@ html, body {
|
||||
width: 100%;
|
||||
max-width: 100%;
|
||||
box-sizing: border-box;
|
||||
padding: 6px 8px; /* компактнее поля превью */
|
||||
font-size: 10.5px; /* мелкий текст по умолчанию */
|
||||
resize: none; /* запрет изменения размера на канвасе */
|
||||
}
|
||||
|
||||
.df-node .box textarea {
|
||||
@@ -112,6 +168,7 @@ html, body {
|
||||
overflow-y: auto; /* только вертикальный скролл при необходимости */
|
||||
overflow-x: hidden; /* убираем горизонтальный скролл внутри textarea */
|
||||
max-height: 180px; /* предотвращаем бесконечную высоту */
|
||||
resize: none; /* запрет ручного ресайза превью */
|
||||
}
|
||||
|
||||
/* Выделение выбранного узла — мягкое */
|
||||
@@ -120,6 +177,15 @@ html, body {
|
||||
border-color: var(--accent);
|
||||
box-shadow: 0 0 0 1px color-mix(in srgb, var(--accent) 40%, transparent);
|
||||
}
|
||||
/* Привести disabled к виду обычных превью (без «серости» браузера) */
|
||||
.drawflow .drawflow-node .box input[disabled],
|
||||
.drawflow .drawflow-node .box textarea[disabled] {
|
||||
opacity: 1;
|
||||
color: #e5e7eb;
|
||||
background: #0f141a;
|
||||
border-color: #2b3646;
|
||||
cursor: default;
|
||||
}
|
||||
|
||||
/* Порты: более аккуратные, без «оранжевого» */
|
||||
.drawflow .drawflow-node .inputs .input,
|
||||
@@ -131,19 +197,36 @@ html, body {
|
||||
box-shadow: 0 0 0 2px rgba(0,0,0,.25);
|
||||
}
|
||||
|
||||
/* Линии соединений: плавные, аккуратные цвета */
|
||||
/* Линии соединений: тоньше и спокойнее */
|
||||
.drawflow .connection .main-path {
|
||||
stroke: var(--connector) !important;
|
||||
/* Толщина линии масштабируется от зума (var(--zoom) задаётся на #canvas из JS) */
|
||||
stroke-width: clamp(1.6px, calc(3px / var(--zoom, 1)), 6px) !important;
|
||||
opacity: 0.95 !important;
|
||||
stroke-width: clamp(1px, calc(2.2px / var(--zoom, 1)), 4.5px) !important;
|
||||
opacity: 0.9 !important;
|
||||
stroke-linecap: round; /* сглаженные окончания */
|
||||
stroke-linejoin: round; /* сглажённые соединения */
|
||||
}
|
||||
|
||||
/* Connection styling classes (set by JS; stable even if Drawflow re-renders paths) */
|
||||
.drawflow .connection.conn-if-true .main-path {
|
||||
stroke: var(--wire-true) !important;
|
||||
stroke-dasharray: 6 6 !important;
|
||||
}
|
||||
.drawflow .connection.conn-if-false .main-path {
|
||||
stroke: var(--wire-false) !important;
|
||||
stroke-dasharray: 6 6 !important;
|
||||
}
|
||||
.drawflow .connection.conn-provider .main-path { stroke: var(--wire-provider) !important; }
|
||||
.drawflow .connection.conn-raw .main-path { stroke: var(--wire-raw) !important; }
|
||||
.drawflow .connection.conn-setvars .main-path { stroke: var(--wire-setvars) !important; }
|
||||
.drawflow .connection.conn-return .main-path { stroke: var(--wire-return) !important; }
|
||||
/* Подсветка входящих к ошибочной ноде рёбер (мягкий красный) */
|
||||
.drawflow .connection.conn-upstream-err .main-path { stroke: #ef4444 !important; opacity: .95 !important; }
|
||||
|
||||
.drawflow .connection .main-path.selected,
|
||||
.drawflow .connection:hover .main-path {
|
||||
stroke: var(--accent-2) !important;
|
||||
/* На hover/selected — немного толще базовой формулы */
|
||||
stroke-width: clamp(2px, calc(3.6px / var(--zoom, 1)), 7px) !important;
|
||||
/* На hover/selected — слегка толще базовой формулы */
|
||||
stroke-width: clamp(1.3px, calc(2.6px / var(--zoom, 1)), 5px) !important;
|
||||
}
|
||||
|
||||
/* Точки изгибов/ручки */
|
||||
@@ -268,19 +351,19 @@ a.chip-btn {
|
||||
color: #e5e7eb;
|
||||
border: 1px solid #334155;
|
||||
box-shadow: 0 2px 6px rgba(0,0,0,.35);
|
||||
transition: transform .12s ease, box-shadow .12s ease, background-color .12s ease, border-color .12s ease, color .12s ease;
|
||||
transition: var(--tr-base), var(--tr-pop);
|
||||
user-select: none;
|
||||
}
|
||||
.chip-btn:hover,
|
||||
a.chip-btn:hover {
|
||||
background: #1f2937;
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.22), 0 4px 10px rgba(0,0,0,.35);
|
||||
box-shadow: var(--ring3-22-shadow);
|
||||
}
|
||||
.chip-btn:active,
|
||||
a.chip-btn:active {
|
||||
transform: translateY(1px);
|
||||
box-shadow: 0 0 0 2px rgba(96,165,250,.20), 0 2px 6px rgba(0,0,0,.35);
|
||||
box-shadow: var(--ring2-20-shadow);
|
||||
}
|
||||
|
||||
/* Инпуты и селекты в шапке — в одном визуальном ряду с чипами */
|
||||
@@ -297,7 +380,7 @@ a.chip-btn:active {
|
||||
}
|
||||
.top-input:focus {
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.20);
|
||||
box-shadow: var(--focus-ring3-20);
|
||||
}
|
||||
|
||||
/* Внутренние заголовки в блоке ноды */
|
||||
@@ -322,7 +405,7 @@ a.chip-btn:active {
|
||||
box-shadow: 0 2px 6px rgba(0,0,0,.35);
|
||||
cursor: pointer;
|
||||
opacity: .85;
|
||||
transition: transform .12s ease, opacity .12s ease, box-shadow .12s ease, border-color .12s ease, background-color .12s ease;
|
||||
transition: var(--tr-base), var(--tr-pop), opacity .12s ease;
|
||||
}
|
||||
.drawflow .connection:hover foreignObject,
|
||||
.drawflow .connection:hover [class*="remove"],
|
||||
@@ -331,7 +414,7 @@ a.chip-btn:active {
|
||||
opacity: 1;
|
||||
transform: scale(1.05);
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.20), 0 4px 10px rgba(0,0,0,.35);
|
||||
box-shadow: var(--ring3-20-shadow);
|
||||
}
|
||||
/* If delete control is rendered inside foreignObject, normalize inner box */
|
||||
.drawflow .connection foreignObject div,
|
||||
@@ -685,7 +768,7 @@ a.chip-btn:active {
|
||||
/* Port hover affordance (no heavy effects) */
|
||||
.drawflow .drawflow-node .inputs .input,
|
||||
.drawflow .drawflow-node .outputs .output {
|
||||
transition: transform .08s ease;
|
||||
transition: var(--tr-pop-fast);
|
||||
will-change: transform;
|
||||
}
|
||||
.drawflow .drawflow-node .inputs .input:hover,
|
||||
@@ -712,18 +795,18 @@ a.chip-btn:active {
|
||||
box-shadow: 0 2px 6px rgba(0,0,0,.35) !important;
|
||||
cursor: pointer !important;
|
||||
z-index: 10 !important;
|
||||
transition: transform .12s ease, box-shadow .12s ease, background-color .12s ease, border-color .12s ease, color .12s ease !important;
|
||||
transition: var(--tr-base), var(--tr-pop) !important;
|
||||
}
|
||||
.drawflow .drawflow-node .close:hover {
|
||||
transform: scale(1.06) !important;
|
||||
background: #1f2937 !important;
|
||||
border-color: var(--accent-2) !important;
|
||||
color: #f8fafc !important;
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.22), 0 4px 10px rgba(0,0,0,.35) !important;
|
||||
box-shadow: var(--ring3-22-shadow) !important;
|
||||
}
|
||||
.drawflow .drawflow-node .close:active {
|
||||
transform: scale(0.98) !important;
|
||||
box-shadow: 0 0 0 2px rgba(96,165,250,.20), 0 2px 6px rgba(0,0,0,.35) !important;
|
||||
box-shadow: var(--ring2-20-shadow) !important;
|
||||
}
|
||||
/* Drawflow floating delete handle (class: .drawflow-delete) — restyle but keep behavior */
|
||||
#drawflow .drawflow-delete,
|
||||
@@ -741,7 +824,7 @@ a.chip-btn:active {
|
||||
box-shadow: 0 2px 6px rgba(0,0,0,.35) !important;
|
||||
cursor: pointer !important;
|
||||
z-index: 1000 !important;
|
||||
transition: transform .12s ease, box-shadow .12s ease, background-color .12s ease, border-color .12s ease !important;
|
||||
transition: var(--tr-base), var(--tr-pop) !important;
|
||||
}
|
||||
#drawflow .drawflow-delete::before,
|
||||
.drawflow-delete::before {
|
||||
@@ -757,7 +840,7 @@ a.chip-btn:active {
|
||||
transform: translate(-50%, -50%) scale(1.06) !important;
|
||||
background: #1f2937 !important;
|
||||
border-color: var(--accent-2) !important;
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.22), 0 4px 10px rgba(0,0,0,.35) !important;
|
||||
box-shadow: var(--ring3-22-shadow) !important;
|
||||
}
|
||||
#drawflow .drawflow-delete:active,
|
||||
.drawflow-delete:active {
|
||||
@@ -766,7 +849,7 @@ a.chip-btn:active {
|
||||
/* Execution highlight states (SSE-driven) */
|
||||
.drawflow .drawflow-node .title-box,
|
||||
.drawflow .drawflow-node .box {
|
||||
transition: border-color .12s ease, box-shadow .12s ease, background-color .12s ease;
|
||||
transition: var(--tr-base);
|
||||
}
|
||||
|
||||
.drawflow .drawflow-node.node-running .title-box,
|
||||
@@ -808,16 +891,6 @@ a.chip-btn:active {
|
||||
transform: translate(-50%, -100%);
|
||||
z-index: 1000; /* above nodes/edges but below menus */
|
||||
}
|
||||
/* Снимаем скролл-бары с контейнера Drawflow, чтобы не перекрывать правую стрелку */
|
||||
#drawflow {
|
||||
overflow: hidden !important;
|
||||
position: relative;
|
||||
z-index: 1; /* гарантируем, что канвас виден под HUD и над фоном */
|
||||
/* Растянем контейнер Drawflow на всю центральную колонку */
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
display: block;
|
||||
}
|
||||
|
||||
/* Panels collapse controls and layout */
|
||||
#container.collapse-left {
|
||||
@@ -1002,11 +1075,7 @@ select#pm-role {
|
||||
outline: none;
|
||||
font: 12px/1 Inter, system-ui, Arial, sans-serif;
|
||||
|
||||
transition:
|
||||
border-color .12s ease,
|
||||
box-shadow .12s ease,
|
||||
background-color .12s ease,
|
||||
color .12s ease;
|
||||
transition: var(--tr-base);
|
||||
}
|
||||
|
||||
/* Hover and focus states consistent with .top-input */
|
||||
@@ -1025,7 +1094,7 @@ select#vars-scope:focus,
|
||||
select.v-mode:focus,
|
||||
select#pm-role:focus {
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.20);
|
||||
box-shadow: var(--focus-ring3-20);
|
||||
}
|
||||
|
||||
/* Compact width contexts: keep natural width unless container forces 100% */
|
||||
@@ -1202,4 +1271,196 @@ header { position: relative; }
|
||||
}
|
||||
#inspector .var-row .v-del {
|
||||
flex: 0 0 auto;
|
||||
}
|
||||
}
|
||||
/* --- Wire labels and arrows overlay --- */
|
||||
#wire-labels {
|
||||
position: absolute;
|
||||
inset: 0;
|
||||
pointer-events: none;
|
||||
z-index: 4; /* над линиями, под панелями */
|
||||
}
|
||||
.wire-label {
|
||||
position: absolute;
|
||||
transform: translate(-50%, -50%);
|
||||
background: #10151c;
|
||||
color: #e5e7eb;
|
||||
border: 1px solid rgba(148,163,184,.35);
|
||||
border-radius: 6px;
|
||||
padding: 1px 4px;
|
||||
font: 10px/1.2 Inter, system-ui, Arial, sans-serif;
|
||||
white-space: nowrap;
|
||||
opacity: .9;
|
||||
user-select: none;
|
||||
}
|
||||
.wire-arrow {
|
||||
position: absolute;
|
||||
width: 0;
|
||||
height: 0;
|
||||
border-left: 6px solid transparent;
|
||||
border-right: 6px solid transparent;
|
||||
border-top: 8px solid var(--connector); /* перекрашивается inline из цвета линии */
|
||||
transform-origin: 50% 70%;
|
||||
opacity: .95;
|
||||
}
|
||||
/* Димминг посторонних связей при фокусе ноды */
|
||||
.drawflow .connection.dim .main-path {
|
||||
opacity: .35 !important;
|
||||
}
|
||||
|
||||
/* --- Сворачиваемые блоки превью в нодах --- */
|
||||
.np-coll { margin: 4px 0; }
|
||||
.np-coll > summary {
|
||||
list-style: none;
|
||||
cursor: pointer;
|
||||
color: var(--muted);
|
||||
font-size: 10px;
|
||||
margin: 4px 0 2px;
|
||||
}
|
||||
.np-coll > summary::-webkit-details-marker { display: none; }
|
||||
.np-coll[open] > summary { color: #cbd5e1; }
|
||||
|
||||
/* groups overlay removed */
|
||||
/* --- Canvas preview sanitization: hide hints/labels/checkboxes (only on canvas node previews) --- */
|
||||
/* Скрываем визуальные хинты, подписи и «галочки» только внутри превью нод на канвасе.
|
||||
Summary секции (headers/template) остаются видимыми, textarea/inputs продолжают отображать значения. */
|
||||
#canvas .drawflow .drawflow-node .node-preview .hint,
|
||||
#canvas .drawflow .drawflow-node .node-preview label,
|
||||
#canvas .drawflow .drawflow-node .node-preview input[type="checkbox"] {
|
||||
display: none !important;
|
||||
}
|
||||
|
||||
/* --- Unified checkbox style across UI --- */
|
||||
/* Единый тёмный стиль чекбоксов под тему проекта (акцент — var(--accent-2)).
|
||||
Применяется ко всей UI (инспектор, «Запуск», Prompt Blocks, STORE‑панель и т.д.).
|
||||
На канвасе в превью чекбоксы скрыты блоком выше. */
|
||||
input[type="checkbox"] {
|
||||
-webkit-appearance: none;
|
||||
appearance: none;
|
||||
width: 16px;
|
||||
height: 16px;
|
||||
display: inline-block;
|
||||
vertical-align: -2px;
|
||||
border: 1px solid #334155;
|
||||
border-radius: 4px;
|
||||
background: #0f141a;
|
||||
box-shadow: 0 0 0 0 rgba(96,165,250,0.0);
|
||||
transition:
|
||||
background-color .12s ease,
|
||||
border-color .12s ease,
|
||||
box-shadow .12s ease,
|
||||
transform .06s ease;
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
input[type="checkbox"]:hover {
|
||||
background: #121820;
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: 0 0 0 3px rgba(96,165,250,.18);
|
||||
}
|
||||
|
||||
input[type="checkbox"]:active {
|
||||
transform: scale(0.96);
|
||||
}
|
||||
|
||||
input[type="checkbox"]:checked {
|
||||
border-color: var(--accent-2);
|
||||
background-color: #0f141a;
|
||||
background-image: url("data:image/svg+xml;utf8,<svg xmlns='http://www.w3.org/2000/svg' width='14' height='14' viewBox='0 0 24 24' fill='none' stroke='%2360a5fa' stroke-width='3' stroke-linecap='round' stroke-linejoin='round'><polyline points='20 6 9 17 4 12'/></svg>");
|
||||
background-repeat: no-repeat;
|
||||
background-position: center;
|
||||
background-size: 12px 12px;
|
||||
}
|
||||
|
||||
input[type="checkbox"]:focus-visible {
|
||||
outline: none;
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: var(--focus-ring3-22);
|
||||
}
|
||||
|
||||
input[type="checkbox"]:disabled {
|
||||
opacity: .6;
|
||||
cursor: not-allowed;
|
||||
box-shadow: none;
|
||||
}
|
||||
/* --- Enhanced checkbox visual: add glowing blue dot at center --- */
|
||||
/* Применяется ко всем чекбоксам в UI (инспектор, Запуск, Prompt Blocks, STORE и т.д.).
|
||||
В превью нод на канвасе чекбоксы скрыты ранее добавленным правилом. */
|
||||
input[type="checkbox"] {
|
||||
position: relative; /* для центрирования псевдо-элемента */
|
||||
overflow: visible; /* безопасно для свечения */
|
||||
}
|
||||
input[type="checkbox"]::after {
|
||||
content: "";
|
||||
position: absolute;
|
||||
left: 50%;
|
||||
top: 50%;
|
||||
width: 6px;
|
||||
height: 6px;
|
||||
border-radius: 999px;
|
||||
background: var(--accent-2);
|
||||
transform: translate(-50%, -50%) scale(0.6);
|
||||
opacity: .6;
|
||||
/* мягкое синее свечение в покое */
|
||||
box-shadow:
|
||||
0 0 4px rgba(96,165,250,.45),
|
||||
0 0 10px rgba(96,165,250,.25);
|
||||
transition:
|
||||
transform .12s ease,
|
||||
opacity .12s ease,
|
||||
box-shadow .12s ease;
|
||||
}
|
||||
input[type="checkbox"]:checked::after {
|
||||
transform: translate(-50%, -50%) scale(1.0);
|
||||
opacity: 1;
|
||||
/* усиленное свечение при включении */
|
||||
box-shadow:
|
||||
0 0 6px rgba(96,165,250,.80),
|
||||
0 0 14px rgba(96,165,250,.60),
|
||||
0 0 24px rgba(96,165,250,.35);
|
||||
}
|
||||
input[type="checkbox"]:disabled::after {
|
||||
opacity: .35;
|
||||
box-shadow: 0 0 2px rgba(96,165,250,.25);
|
||||
}
|
||||
|
||||
/* --- Unified number input style across UI --- */
|
||||
/* Единый стиль для всех input[type=number], включая инспектор, «Запуск», SERVICE‑панели и т.д. */
|
||||
input[type="number"] {
|
||||
width: 100%;
|
||||
background: #0f141a;
|
||||
color: #e5e7eb;
|
||||
border: 1px solid #2b3646;
|
||||
border-radius: 8px;
|
||||
padding: 6px 8px;
|
||||
height: 32px;
|
||||
box-sizing: border-box;
|
||||
font: 12px/1 Inter, system-ui, Arial, sans-serif;
|
||||
transition: var(--tr-base);
|
||||
}
|
||||
input[type="number"]:hover {
|
||||
background: #121820;
|
||||
border-color: var(--accent-2);
|
||||
}
|
||||
input[type="number"]:focus {
|
||||
outline: none;
|
||||
border-color: var(--accent-2);
|
||||
box-shadow: var(--focus-ring3-20);
|
||||
}
|
||||
input[type="number"]:disabled {
|
||||
opacity: .6;
|
||||
cursor: not-allowed;
|
||||
box-shadow: none;
|
||||
}
|
||||
|
||||
/* Убираем нативные «стрелочки», чтобы стиль был единым во всех браузерах */
|
||||
input[type="number"]::-webkit-outer-spin-button,
|
||||
input[type="number"]::-webkit-inner-spin-button {
|
||||
-webkit-appearance: none;
|
||||
margin: 0;
|
||||
}
|
||||
input[type="number"] {
|
||||
-moz-appearance: textfield;
|
||||
}
|
||||
|
||||
/* --- Canvas preview sanitization (напоминание): хинты/лейблы/чекбоксы скрыты в превью --- */
|
||||
/* Секции summary (headers/template) остаются видимыми */
|
||||
1906
static/editor.html
@@ -4,6 +4,12 @@
|
||||
<meta charset="utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>НадTavern</title>
|
||||
<link rel="icon" href="/favicon.ico" />
|
||||
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png" />
|
||||
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png" />
|
||||
<link rel="apple-touch-icon" href="/apple-touch-icon.png" />
|
||||
<link rel="manifest" href="/site.webmanifest" />
|
||||
<meta name="theme-color" content="#ffffff" />
|
||||
<style>
|
||||
body { font-family: Arial, sans-serif; margin: 24px; }
|
||||
textarea { width: 100%; height: 200px; }
|
||||
|
||||
@@ -21,10 +21,15 @@
|
||||
// Готовим новые данные с глубокой копией blocks
|
||||
const newData = { ...(n.data || {}), blocks: Array.isArray(d2.blocks) ? d2.blocks.map(b => ({ ...b })) : [] };
|
||||
// 1) Обновляем внутреннее состояние Drawflow, чтобы export() возвращал актуальные данные
|
||||
try { editor.updateNodeDataFromId(id, newData); } catch (e) {}
|
||||
// 2) Обновляем DOM-отражение (источник правды для toPipelineJSON)
|
||||
const el2 = document.querySelector(`#node-${id}`);
|
||||
if (el2) el2.__data = JSON.parse(JSON.stringify(newData));
|
||||
try {
|
||||
if (w.AU && typeof w.AU.updateNodeDataAndDom === 'function') {
|
||||
w.AU.updateNodeDataAndDom(editor, id, newData);
|
||||
} else {
|
||||
editor.updateNodeDataFromId(id, newData);
|
||||
const el2 = document.querySelector(`#node-${id}`);
|
||||
if (el2) el2.__data = JSON.parse(JSON.stringify(newData));
|
||||
}
|
||||
} catch (e) {}
|
||||
} catch (e) {}
|
||||
}
|
||||
// Initial sync to attach blocks into __data for toPipelineJSON
|
||||
|
||||
158
static/js/providerTemplates.js
Normal file
@@ -0,0 +1,158 @@
|
||||
/* global window */
|
||||
(function (w) {
|
||||
'use strict';
|
||||
|
||||
// Centralized registry for provider-specific defaults (base_url, endpoint, headers, template)
|
||||
// Exposes window.ProviderTemplates with:
|
||||
// .register(name, { defaultConfig: () => ({ base_url, endpoint, headers, template }) })
|
||||
// .defaults(provider)
|
||||
// .ensureConfigs(nodeData)
|
||||
// .getActiveProv(nodeData)
|
||||
// .getActiveCfg(nodeData)
|
||||
// .providers()
|
||||
|
||||
const PT = {};
|
||||
const _registry = new Map();
|
||||
|
||||
function norm(p) {
|
||||
return String(p == null ? 'openai' : p).toLowerCase().trim();
|
||||
}
|
||||
|
||||
PT.register = function register(name, def) {
|
||||
const key = norm(name);
|
||||
if (!def || typeof def.defaultConfig !== 'function') {
|
||||
throw new Error('ProviderTemplates.register: def.defaultConfig() required');
|
||||
}
|
||||
_registry.set(key, { defaultConfig: def.defaultConfig });
|
||||
};
|
||||
|
||||
PT.providers = function providers() {
|
||||
return Array.from(_registry.keys());
|
||||
};
|
||||
|
||||
PT.defaults = function defaults(provider) {
|
||||
const key = norm(provider);
|
||||
const rec = _registry.get(key);
|
||||
if (rec && typeof rec.defaultConfig === 'function') {
|
||||
try { return rec.defaultConfig(); } catch (_) {}
|
||||
}
|
||||
return { base_url: '', endpoint: '', headers: `{}`, template: `{}` };
|
||||
};
|
||||
|
||||
PT.ensureConfigs = function ensureConfigs(d) {
|
||||
if (!d) return;
|
||||
if (!d.provider) d.provider = 'openai';
|
||||
if (!d.provider_configs || typeof d.provider_configs !== 'object') d.provider_configs = {};
|
||||
for (const p of PT.providers()) {
|
||||
if (!d.provider_configs[p]) d.provider_configs[p] = PT.defaults(p);
|
||||
}
|
||||
};
|
||||
|
||||
PT.getActiveProv = function getActiveProv(d) {
|
||||
return norm(d && d.provider);
|
||||
};
|
||||
|
||||
PT.getActiveCfg = function getActiveCfg(d) {
|
||||
PT.ensureConfigs(d);
|
||||
const p = PT.getActiveProv(d);
|
||||
return d && d.provider_configs ? (d.provider_configs[p] || {}) : {};
|
||||
};
|
||||
|
||||
// --- Built-in providers (default presets) ---
|
||||
// Templates mirror original editor.html logic; use macros [[...]] and {{ ... }} as-is.
|
||||
function T_OPENAI() { return `{
|
||||
"model": "{{ model }}",
|
||||
[[PROMPT]],
|
||||
"temperature": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},
|
||||
"top_p": {{ incoming.json.top_p|default(params.top_p|default(1)) }},
|
||||
"max_tokens": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},
|
||||
"max_completion_tokens": {{ incoming.json.max_completion_tokens|default(params.max_tokens|default(256)) }},
|
||||
"presence_penalty": {{ incoming.json.presence_penalty|default(0) }},
|
||||
"frequency_penalty": {{ incoming.json.frequency_penalty|default(0) }},
|
||||
"stop": {{ incoming.json.stop|default(params.stop|default([])) }},
|
||||
"stream": {{ incoming.json.stream|default(false) }}
|
||||
}`; }
|
||||
|
||||
function T_GEMINI() { return `{
|
||||
"model": "{{ model }}",
|
||||
[[PROMPT]],
|
||||
"safetySettings": {{ incoming.json.safetySettings|default([]) }},
|
||||
"generationConfig": {
|
||||
"temperature": {{ incoming.json.generationConfig.temperature|default(params.temperature|default(0.7)) }},
|
||||
"topP": {{ incoming.json.generationConfig.topP|default(params.top_p|default(1)) }},
|
||||
"maxOutputTokens": {{ incoming.json.generationConfig.maxOutputTokens|default(params.max_tokens|default(256)) }},
|
||||
"stopSequences": {{ incoming.json.generationConfig.stopSequences|default(params.stop|default([])) }},
|
||||
"candidateCount": {{ incoming.json.generationConfig.candidateCount|default(1) }},
|
||||
"thinkingConfig": {
|
||||
"includeThoughts": {{ incoming.json.generationConfig.thinkingConfig.includeThoughts|default(false) }},
|
||||
"thinkingBudget": {{ incoming.json.generationConfig.thinkingConfig.thinkingBudget|default(0) }}
|
||||
}
|
||||
}
|
||||
}`; }
|
||||
|
||||
function T_GEMINI_IMAGE() { return `{
|
||||
"model": "{{ model }}",
|
||||
[[PROMPT]]
|
||||
}`; }
|
||||
|
||||
function T_CLAUDE() { return `{
|
||||
"model": "{{ model }}",
|
||||
[[PROMPT]],
|
||||
"temperature": {{ incoming.json.temperature|default(params.temperature|default(0.7)) }},
|
||||
"top_p": {{ incoming.json.top_p|default(params.top_p|default(1)) }},
|
||||
"max_tokens": {{ incoming.json.max_tokens|default(params.max_tokens|default(256)) }},
|
||||
"stop_sequences": {{ incoming.json.stop_sequences|default(params.stop|default([])) }},
|
||||
"stream": {{ incoming.json.stream|default(false) }},
|
||||
"thinking": {
|
||||
"type": "{{ incoming.json.thinking.type|default('disabled') }}",
|
||||
"budget_tokens": {{ incoming.json.thinking.budget_tokens|default(0) }}
|
||||
},
|
||||
"anthropic_version": "{{ anthropic_version|default('2023-06-01') }}"
|
||||
}`; }
|
||||
|
||||
// Register built-ins
|
||||
PT.register('openai', {
|
||||
defaultConfig: () => ({
|
||||
base_url: 'https://api.openai.com',
|
||||
endpoint: '/v1/chat/completions',
|
||||
headers: `{"Authorization":"Bearer [[VAR:incoming.headers.authorization]]"}`,
|
||||
template: T_OPENAI()
|
||||
})
|
||||
});
|
||||
PT.register('gemini', {
|
||||
defaultConfig: () => ({
|
||||
base_url: 'https://generativelanguage.googleapis.com',
|
||||
endpoint: '/v1beta/models/{{ model }}:generateContent?key=[[VAR:incoming.api_keys.key]]',
|
||||
headers: `{}`,
|
||||
template: T_GEMINI()
|
||||
})
|
||||
});
|
||||
PT.register('gemini_image', {
|
||||
defaultConfig: () => ({
|
||||
base_url: 'https://generativelanguage.googleapis.com',
|
||||
endpoint: '/v1beta/models/{{ model }}:generateContent',
|
||||
headers: `{"x-goog-api-key":"[[VAR:incoming.api_keys.key]]"}`,
|
||||
template: T_GEMINI_IMAGE()
|
||||
})
|
||||
});
|
||||
PT.register('claude', {
|
||||
defaultConfig: () => ({
|
||||
base_url: 'https://api.anthropic.com',
|
||||
endpoint: '/v1/messages',
|
||||
headers: `{"x-api-key":"[[VAR:incoming.headers.x-api-key]]","anthropic-version":"2023-06-01","anthropic-beta":"[[VAR:incoming.headers.anthropic-beta]]"}`,
|
||||
template: T_CLAUDE()
|
||||
})
|
||||
});
|
||||
|
||||
try { console.debug('[ProviderTemplates] providers:', PT.providers()); } catch (_) {}
|
||||
|
||||
// Export globals and compatibility shims
|
||||
try {
|
||||
w.ProviderTemplates = PT;
|
||||
// Back-compat shims so existing code can call global helpers
|
||||
w.providerDefaults = PT.defaults;
|
||||
w.ensureProviderConfigs = PT.ensureConfigs;
|
||||
w.getActiveProv = PT.getActiveProv;
|
||||
w.getActiveCfg = PT.getActiveCfg;
|
||||
} catch (_) {}
|
||||
})(window);
|
||||
@@ -12,7 +12,8 @@
|
||||
|
||||
// Top-level pipeline meta kept in memory and included into JSON on save.
|
||||
// Allows UI to edit loop parameters without manual JSON edits.
|
||||
let _pipelineMeta = {
|
||||
// DRY: единый источник дефолтов и нормализации meta
|
||||
const MetaDefaults = Object.freeze({
|
||||
id: 'pipeline_editor',
|
||||
name: 'Edited Pipeline',
|
||||
parallel_limit: 8,
|
||||
@@ -20,19 +21,74 @@
|
||||
loop_max_iters: 1000,
|
||||
loop_time_budget_ms: 10000,
|
||||
clear_var_store: true,
|
||||
// New: default HTTP timeout for upstream requests (seconds)
|
||||
http_timeout_sec: 60,
|
||||
// New (v1): стратегия извлечения текста для [[OUTx]] (глобальная по умолчанию)
|
||||
// auto | deep | openai | gemini | claude | jsonpath
|
||||
text_extract_strategy: 'auto',
|
||||
// Используется при стратегии jsonpath (dot-нотация, поддержка индексов: a.b.0.c)
|
||||
text_extract_json_path: '',
|
||||
// Разделитель при объединении массива результатов
|
||||
text_join_sep: '\n',
|
||||
// v2: коллекция пресетов извлечения текста, управляется в "Запуск"
|
||||
// [{ id, name, strategy, json_path, join_sep }]
|
||||
text_extract_presets: [],
|
||||
};
|
||||
});
|
||||
|
||||
let _pipelineMeta = { ...MetaDefaults };
|
||||
|
||||
// Нормализатор meta: приводит типы, поддерживает синонимы ключей, заполняет дефолты
|
||||
function ensureMeta(p) {
|
||||
const src = (p && typeof p === 'object') ? p : {};
|
||||
const out = { ...MetaDefaults };
|
||||
|
||||
// helpers
|
||||
const toInt = (v, def) => {
|
||||
try {
|
||||
const n = parseInt(v, 10);
|
||||
return Number.isFinite(n) && n > 0 ? n : def;
|
||||
} catch { return def; }
|
||||
};
|
||||
const toNum = (v, def) => {
|
||||
try {
|
||||
const n = parseFloat(v);
|
||||
return !Number.isNaN(n) && n > 0 ? n : def;
|
||||
} catch { return def; }
|
||||
};
|
||||
|
||||
// базовые поля
|
||||
try { out.id = String((src.id ?? out.id) || out.id); } catch {}
|
||||
try { out.name = String((src.name ?? out.name) || out.name); } catch {}
|
||||
|
||||
out.parallel_limit = toInt(src.parallel_limit, out.parallel_limit);
|
||||
out.loop_mode = String((src.loop_mode ?? out.loop_mode) || out.loop_mode);
|
||||
out.loop_max_iters = toInt(src.loop_max_iters, out.loop_max_iters);
|
||||
out.loop_time_budget_ms = toInt(src.loop_time_budget_ms, out.loop_time_budget_ms);
|
||||
out.clear_var_store = (typeof src.clear_var_store === 'boolean') ? !!src.clear_var_store : out.clear_var_store;
|
||||
out.http_timeout_sec = toNum(src.http_timeout_sec, out.http_timeout_sec);
|
||||
out.text_extract_strategy = String((src.text_extract_strategy ?? out.text_extract_strategy) || out.text_extract_strategy);
|
||||
out.text_extract_json_path = String((src.text_extract_json_path ?? out.text_extract_json_path) || out.text_extract_json_path);
|
||||
|
||||
// поддержка синонимов text_join_sep (регистр и вариации)
|
||||
let joinSep = out.text_join_sep;
|
||||
try {
|
||||
for (const k of Object.keys(src)) {
|
||||
if (String(k).toLowerCase() === 'text_join_sep') { joinSep = src[k]; break; }
|
||||
}
|
||||
} catch {}
|
||||
out.text_join_sep = String((joinSep ?? src.text_join_sep ?? out.text_join_sep) || out.text_join_sep);
|
||||
|
||||
// коллекция пресетов
|
||||
try {
|
||||
const arr = Array.isArray(src.text_extract_presets) ? src.text_extract_presets : [];
|
||||
out.text_extract_presets = arr
|
||||
.filter(it => it && typeof it === 'object')
|
||||
.map((it, idx) => ({
|
||||
id: String((it.id ?? '') || ('p' + Date.now().toString(36) + Math.random().toString(36).slice(2) + idx)),
|
||||
name: String(it.name ?? (it.json_path || 'Preset')),
|
||||
strategy: String(it.strategy ?? 'auto'),
|
||||
json_path: String(it.json_path ?? ''),
|
||||
join_sep: String(it.join_sep ?? '\n'),
|
||||
}));
|
||||
} catch { out.text_extract_presets = []; }
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
function getPipelineMeta() {
|
||||
return { ..._pipelineMeta };
|
||||
@@ -40,48 +96,8 @@
|
||||
|
||||
function updatePipelineMeta(p) {
|
||||
if (!p || typeof p !== 'object') return;
|
||||
const keys = [
|
||||
'id','name','parallel_limit','loop_mode','loop_max_iters','loop_time_budget_ms','clear_var_store','http_timeout_sec',
|
||||
'text_extract_strategy','text_extract_json_path','text_join_sep','text_join_sep','text_join_SEP',
|
||||
// v2 presets collection
|
||||
'text_extract_presets'
|
||||
];
|
||||
for (const k of keys) {
|
||||
if (Object.prototype.hasOwnProperty.call(p, k) && p[k] !== undefined && p[k] !== null && (k === 'clear_var_store' ? true : p[k] !== '')) {
|
||||
if (k === 'parallel_limit' || k === 'loop_max_iters' || k === 'loop_time_budget_ms') {
|
||||
const v = parseInt(p[k], 10);
|
||||
if (!Number.isNaN(v) && v > 0) _pipelineMeta[k] = v;
|
||||
} else if (k === 'http_timeout_sec') {
|
||||
const fv = parseFloat(p[k]);
|
||||
if (!Number.isNaN(fv) && fv > 0) _pipelineMeta[k] = fv;
|
||||
} else if (k === 'clear_var_store') {
|
||||
_pipelineMeta[k] = !!p[k];
|
||||
} else {
|
||||
// спец-обработка коллекции пресетов
|
||||
if (k === 'text_extract_presets') {
|
||||
try {
|
||||
const arr = Array.isArray(p[k]) ? p[k] : [];
|
||||
_pipelineMeta[k] = arr
|
||||
.filter(it => it && typeof it === 'object')
|
||||
.map(it => ({
|
||||
id: String((it.id ?? '') || ('p' + Date.now().toString(36) + Math.random().toString(36).slice(2))),
|
||||
name: String(it.name ?? 'Preset'),
|
||||
strategy: String(it.strategy ?? 'auto'),
|
||||
json_path: String(it.json_path ?? ''),
|
||||
join_sep: String(it.join_sep ?? '\n'),
|
||||
}));
|
||||
} catch (_) {
|
||||
_pipelineMeta[k] = [];
|
||||
}
|
||||
} else if (k.toLowerCase() === 'text_join_sep') {
|
||||
// нормализация ключа join separator (допускаем разные написания)
|
||||
_pipelineMeta['text_join_sep'] = String(p[k]);
|
||||
} else {
|
||||
_pipelineMeta[k] = String(p[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// DRY: единая точка нормализации
|
||||
_pipelineMeta = ensureMeta({ ..._pipelineMeta, ...p });
|
||||
}
|
||||
|
||||
// Drawflow -> pipeline JSON
|
||||
@@ -260,24 +276,10 @@
|
||||
}
|
||||
}
|
||||
|
||||
// 3) Собираем итоговый pipeline JSON с метаданными
|
||||
const meta = getPipelineMeta();
|
||||
return {
|
||||
id: meta.id || 'pipeline_editor',
|
||||
name: meta.name || 'Edited Pipeline',
|
||||
parallel_limit: (typeof meta.parallel_limit === 'number' ? meta.parallel_limit : 8),
|
||||
loop_mode: (meta.loop_mode || 'dag'),
|
||||
loop_max_iters: (typeof meta.loop_max_iters === 'number' ? meta.loop_max_iters : 1000),
|
||||
loop_time_budget_ms: (typeof meta.loop_time_budget_ms === 'number' ? meta.loop_time_budget_ms : 10000),
|
||||
clear_var_store: (typeof meta.clear_var_store === 'boolean' ? meta.clear_var_store : true),
|
||||
http_timeout_sec: (typeof meta.http_timeout_sec === 'number' ? meta.http_timeout_sec : 60),
|
||||
text_extract_strategy: (meta.text_extract_strategy || 'auto'),
|
||||
text_extract_json_path: (meta.text_extract_json_path || ''),
|
||||
text_join_sep: (meta.text_join_sep || '\n'),
|
||||
// v2: persist presets
|
||||
text_extract_presets: (Array.isArray(meta.text_extract_presets) ? meta.text_extract_presets : []),
|
||||
nodes
|
||||
};
|
||||
// 3) Собираем итоговый pipeline JSON с метаданными (нормализованными)
|
||||
const meta = ensureMeta(getPipelineMeta());
|
||||
try { console.debug('[AgentUISer.toPipelineJSON] meta_keys', Object.keys(meta || {})); } catch (e) {}
|
||||
return { ...meta, nodes };
|
||||
}
|
||||
|
||||
// pipeline JSON -> Drawflow
|
||||
@@ -285,25 +287,25 @@
|
||||
ensureDeps();
|
||||
const editor = w.editor;
|
||||
const NODE_IO = w.NODE_IO;
|
||||
|
||||
// Сохраняем метаданные пайплайна для UI
|
||||
try {
|
||||
updatePipelineMeta({
|
||||
id: p && p.id ? p.id : 'pipeline_editor',
|
||||
name: p && p.name ? p.name : 'Edited Pipeline',
|
||||
parallel_limit: (p && typeof p.parallel_limit === 'number') ? p.parallel_limit : 8,
|
||||
loop_mode: p && p.loop_mode ? p.loop_mode : 'dag',
|
||||
loop_max_iters: (p && typeof p.loop_max_iters === 'number') ? p.loop_max_iters : 1000,
|
||||
loop_time_budget_ms: (p && typeof p.loop_time_budget_ms === 'number') ? p.loop_time_budget_ms : 10000,
|
||||
clear_var_store: (p && typeof p.clear_var_store === 'boolean') ? p.clear_var_store : true,
|
||||
http_timeout_sec: (p && typeof p.http_timeout_sec === 'number') ? p.http_timeout_sec : 60,
|
||||
text_extract_strategy: (p && typeof p.text_extract_strategy === 'string') ? p.text_extract_strategy : 'auto',
|
||||
text_extract_json_path: (p && typeof p.text_extract_json_path === 'string') ? p.text_extract_json_path : '',
|
||||
text_join_sep: (p && typeof p.text_join_sep === 'string') ? p.text_join_sep : '\n',
|
||||
// v2: presets from pipeline.json
|
||||
text_extract_presets: (p && Array.isArray(p.text_extract_presets)) ? p.text_extract_presets : [],
|
||||
});
|
||||
} catch (e) {}
|
||||
// Сохраняем метаданные пайплайна для UI (сквозная нормализация)
|
||||
try {
|
||||
updatePipelineMeta(p || {});
|
||||
// Диагностический лог состава meta для подтверждения DRY-рефакторинга
|
||||
try {
|
||||
const metaKeys = ["id","name","parallel_limit","loop_mode","loop_max_iters","loop_time_budget_ms","clear_var_store","http_timeout_sec","text_extract_strategy","text_extract_json_path","text_join_sep","text_extract_presets"];
|
||||
const incomingKeys = metaKeys.filter(k => (p && Object.prototype.hasOwnProperty.call(p, k)));
|
||||
const currentMeta = (typeof getPipelineMeta === 'function') ? getPipelineMeta() : {};
|
||||
console.debug('[AgentUISer.fromPipelineJSON] meta_keys', {
|
||||
incomingKeys,
|
||||
resultKeys: Object.keys(currentMeta || {}),
|
||||
metaPreview: {
|
||||
id: currentMeta && currentMeta.id,
|
||||
loop_mode: currentMeta && currentMeta.loop_mode,
|
||||
http_timeout_sec: currentMeta && currentMeta.http_timeout_sec
|
||||
}
|
||||
});
|
||||
} catch (_) {}
|
||||
} catch (e) {}
|
||||
|
||||
editor.clear();
|
||||
let x = 100; let y = 120; // Fallback
|
||||
|
||||
213
static/js/utils.js
Normal file
@@ -0,0 +1,213 @@
|
||||
/* global window */
|
||||
// AgentUI common UI utilities (DRY helpers shared by editor.html and pm-ui.js)
|
||||
(function (w) {
|
||||
'use strict';
|
||||
|
||||
const AU = {};
|
||||
|
||||
// HTML escaping for safe text/attribute insertion
|
||||
AU.escapeHtml = function escapeHtml(s) {
|
||||
const str = String(s ?? '');
|
||||
return str
|
||||
.replace(/&/g, '&')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>')
|
||||
.replace(/"/g, '"')
|
||||
.replace(/'/g, "'");
|
||||
};
|
||||
|
||||
// Attribute-safe escape (keeps quotes escaped; conservative)
|
||||
AU.escAttr = function escAttr(v) {
|
||||
const s = String(v ?? '');
|
||||
return s
|
||||
.replace(/&/g, '&')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>')
|
||||
.replace(/"/g, '"')
|
||||
.replace(/'/g, "'");
|
||||
};
|
||||
|
||||
// Text-node escape (keeps quotes as-is for readability)
|
||||
AU.escText = function escText(v) {
|
||||
const s = String(v ?? '');
|
||||
return s
|
||||
.replace(/&/g, '&')
|
||||
.replace(/</g, '<')
|
||||
.replace(/>/g, '>');
|
||||
};
|
||||
|
||||
// DRY helper: sync Drawflow node data + mirror into DOM.__data with deep copy
|
||||
AU.updateNodeDataAndDom = function updateNodeDataAndDom(editor, id, data) {
|
||||
try { editor && typeof editor.updateNodeDataFromId === 'function' && editor.updateNodeDataFromId(id, data); } catch (_) {}
|
||||
try {
|
||||
const el = document.querySelector('#node-' + id);
|
||||
if (el) el.__data = JSON.parse(JSON.stringify(data));
|
||||
} catch (_) {}
|
||||
};
|
||||
|
||||
// Double rAF helper: waits for two animation frames; returns Promise or accepts callback
|
||||
AU.nextRaf2 = function nextRaf2(cb) {
|
||||
try {
|
||||
if (typeof requestAnimationFrame === 'function') {
|
||||
if (typeof cb === 'function') {
|
||||
requestAnimationFrame(() => { requestAnimationFrame(() => { try { cb(); } catch (_) {} }); });
|
||||
return;
|
||||
}
|
||||
return new Promise((resolve) => requestAnimationFrame(() => requestAnimationFrame(() => resolve())));
|
||||
} else {
|
||||
if (typeof cb === 'function') { setTimeout(() => { try { cb(); } catch (_) {} }, 32); return; }
|
||||
return new Promise((resolve) => setTimeout(resolve, 32));
|
||||
}
|
||||
} catch (_) {
|
||||
if (typeof cb === 'function') { try { cb(); } catch (__ ) {} }
|
||||
return Promise.resolve();
|
||||
}
|
||||
};
|
||||
|
||||
// Heuristic: looks like long base64 payload
|
||||
AU.isProbablyBase64 = function isProbablyBase64(s) {
|
||||
try {
|
||||
if (typeof s !== 'string') return false;
|
||||
if (s.length < 64) return false;
|
||||
return /^[A-Za-z0-9+/=\r\n]+$/.test(s);
|
||||
} catch { return false; }
|
||||
};
|
||||
|
||||
AU.trimBase64 = function trimBase64(s, maxLen = 180) {
|
||||
try {
|
||||
const str = String(s ?? '');
|
||||
if (str.length > maxLen) {
|
||||
return str.slice(0, maxLen) + `... (trimmed ${str.length - maxLen})`;
|
||||
}
|
||||
return str;
|
||||
} catch { return String(s ?? ''); }
|
||||
};
|
||||
|
||||
// Flatten JSON-like object into [path, stringValue] pairs
|
||||
// Includes special handling for backend preview objects: { "__truncated__": true, "preview": "..." }
|
||||
AU.flattenObject = function flattenObject(obj, prefix = '') {
|
||||
const out = [];
|
||||
if (obj == null) return out;
|
||||
if (typeof obj !== 'object') {
|
||||
out.push([prefix, String(obj)]);
|
||||
return out;
|
||||
}
|
||||
try {
|
||||
const entries = Object.entries(obj);
|
||||
for (const [k, v] of entries) {
|
||||
const p = prefix ? `${prefix}.${k}` : k;
|
||||
if (v && typeof v === 'object' && !Array.isArray(v)) {
|
||||
// Special preview shape from backend
|
||||
if (Object.prototype.hasOwnProperty.call(v, '__truncated__') && Object.prototype.hasOwnProperty.call(v, 'preview')) {
|
||||
out.push([p, String(v.preview ?? '')]);
|
||||
continue;
|
||||
}
|
||||
out.push(...AU.flattenObject(v, p));
|
||||
} else {
|
||||
try {
|
||||
const s = (typeof v === 'string') ? v : JSON.stringify(v, null, 0);
|
||||
out.push([p, s]);
|
||||
} catch {
|
||||
out.push([p, String(v)]);
|
||||
}
|
||||
}
|
||||
}
|
||||
} catch {
|
||||
// Fallback best-effort
|
||||
try { out.push([prefix, JSON.stringify(obj)]); } catch { out.push([prefix, String(obj)]); }
|
||||
}
|
||||
return out;
|
||||
};
|
||||
|
||||
// Format headers dictionary into text lines "Key: Value"
|
||||
AU.fmtHeaders = function fmtHeaders(h) {
|
||||
try {
|
||||
const keys = Object.keys(h || {});
|
||||
return keys.map(k => `${k}: ${String(h[k])}`).join('\n');
|
||||
} catch { return ''; }
|
||||
};
|
||||
|
||||
// Build HTTP request preview text
|
||||
AU.buildReqText = function buildReqText(x) {
|
||||
if (!x) return '';
|
||||
const head = `${x.method || 'POST'} ${x.url || '/'} HTTP/1.1`;
|
||||
const host = (() => {
|
||||
try { const u = new URL(x.url); return `Host: ${u.host}`; } catch { return ''; }
|
||||
})();
|
||||
const hs = AU.fmtHeaders(x.headers || {});
|
||||
const body = String(x.body_text || '').trim();
|
||||
return [head, host, hs, '', body].filter(Boolean).join('\n');
|
||||
};
|
||||
|
||||
// Build HTTP response preview text
|
||||
AU.buildRespText = function buildRespText(x) {
|
||||
if (!x) return '';
|
||||
const head = `HTTP/1.1 ${x.status || 0}`;
|
||||
const hs = AU.fmtHeaders(x.headers || {});
|
||||
const body = String(x.body_text || '').trim();
|
||||
return [head, hs, '', body].filter(Boolean).join('\n');
|
||||
};
|
||||
|
||||
// Unified fetch helper with timeout and JSON handling
|
||||
AU.apiFetch = async function apiFetch(url, opts) {
|
||||
const t0 = (typeof performance !== 'undefined' && performance.now) ? performance.now() : Date.now();
|
||||
const o = opts || {};
|
||||
const method = String(o.method || 'GET').toUpperCase();
|
||||
const expectJson = (o.expectJson !== false); // default true
|
||||
const headers = Object.assign({}, o.headers || {});
|
||||
let body = o.body;
|
||||
const timeoutMs = Number.isFinite(o.timeoutMs) ? o.timeoutMs : 15000;
|
||||
|
||||
const hasAbort = (typeof AbortController !== 'undefined');
|
||||
const ctrl = hasAbort ? new AbortController() : null;
|
||||
let to = null;
|
||||
if (ctrl) {
|
||||
try { to = setTimeout(() => { try { ctrl.abort(); } catch(_){} }, timeoutMs); } catch(_) {}
|
||||
}
|
||||
|
||||
try {
|
||||
if (expectJson) {
|
||||
if (!headers['Accept'] && !headers['accept']) headers['Accept'] = 'application/json';
|
||||
}
|
||||
if (body != null) {
|
||||
const isForm = (typeof FormData !== 'undefined' && body instanceof FormData);
|
||||
const isBlob = (typeof Blob !== 'undefined' && body instanceof Blob);
|
||||
if (typeof body === 'object' && !isForm && !isBlob) {
|
||||
body = JSON.stringify(body);
|
||||
if (!headers['Content-Type'] && !headers['content-type']) headers['Content-Type'] = 'application/json';
|
||||
}
|
||||
}
|
||||
|
||||
const res = await fetch(url, { method, headers, body, signal: ctrl ? ctrl.signal : undefined });
|
||||
const ct = String(res.headers && res.headers.get ? (res.headers.get('Content-Type') || '') : '');
|
||||
const isJsonCt = /application\/json/i.test(ct);
|
||||
|
||||
let data = null;
|
||||
if (expectJson || isJsonCt) {
|
||||
try { data = await res.json(); } catch (_) { data = null; }
|
||||
} else {
|
||||
try { data = await res.text(); } catch (_) { data = null; }
|
||||
}
|
||||
|
||||
const t1 = (typeof performance !== 'undefined' && performance.now) ? performance.now() : Date.now();
|
||||
try { console.debug('[AU.apiFetch]', { method, url, status: res.status, ms: Math.round(t1 - t0) }); } catch(_) {}
|
||||
|
||||
if (!res.ok) {
|
||||
const msg = (data && typeof data === 'object' && data.error) ? String(data.error) : `HTTP ${res.status}`;
|
||||
const err = new Error(`apiFetch: ${msg}`);
|
||||
err.status = res.status;
|
||||
err.data = data;
|
||||
err.url = url;
|
||||
throw err;
|
||||
}
|
||||
|
||||
return data;
|
||||
} finally {
|
||||
if (to) { try { clearTimeout(to); } catch(_) {} }
|
||||
}
|
||||
};
|
||||
|
||||
// Expose
|
||||
try { w.AU = AU; } catch (_) {}
|
||||
try { w.nextRaf2 = AU.nextRaf2; } catch (_) {}
|
||||
})(window);
|
||||
@@ -4,6 +4,12 @@
|
||||
<meta charset="utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>НадTavern — Pipeline Editor (JSON)</title>
|
||||
<link rel="icon" href="/favicon.ico" />
|
||||
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png" />
|
||||
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png" />
|
||||
<link rel="apple-touch-icon" href="/apple-touch-icon.png" />
|
||||
<link rel="manifest" href="/site.webmanifest" />
|
||||
<meta name="theme-color" content="#ffffff" />
|
||||
<style>
|
||||
body { font-family: Arial, sans-serif; margin: 24px; }
|
||||
textarea { width: 100%; height: 70vh; }
|
||||
|
||||
1
tests/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
# Make tests a package so imports like "from tests.utils import ..." work.
|
||||
@@ -1,25 +1,9 @@
|
||||
import asyncio
|
||||
import json
|
||||
from agentui.pipeline.executor import PipelineExecutor, ExecutionError, Node, NODE_REGISTRY
|
||||
from tests.utils import pp as _pp, base_ctx as _base_ctx
|
||||
|
||||
# Helper to pretty print short JSON safely
|
||||
def _pp(obj, max_len=800):
|
||||
try:
|
||||
s = json.dumps(obj, ensure_ascii=False, indent=2)
|
||||
except Exception:
|
||||
s = str(obj)
|
||||
if len(s) > max_len:
|
||||
return s[:max_len] + "...<truncated>"
|
||||
return s
|
||||
|
||||
def _base_ctx(vendor="openai"):
|
||||
return {
|
||||
"model": "gpt-x",
|
||||
"vendor_format": vendor,
|
||||
"params": {"temperature": 0.1},
|
||||
"chat": {"last_user": "hi"},
|
||||
"OUT": {},
|
||||
}
|
||||
|
||||
async def scenario_if_single_quotes_ok():
|
||||
print("\n=== SCENARIO 1: If with single quotes ===")
|
||||
|
||||
@@ -1,33 +1,8 @@
|
||||
import asyncio
|
||||
import json
|
||||
from agentui.pipeline.executor import PipelineExecutor
|
||||
from agentui.pipeline.storage import clear_var_store
|
||||
from tests.utils import pp as _pp, ctx as _ctx
|
||||
|
||||
def _pp(obj, max_len=800):
|
||||
try:
|
||||
s = json.dumps(obj, ensure_ascii=False, indent=2)
|
||||
except Exception:
|
||||
s = str(obj)
|
||||
if len(s) > max_len:
|
||||
return s[:max_len] + "...<truncated>"
|
||||
return s
|
||||
|
||||
def _ctx(vendor="openai", incoming=None, params=None):
|
||||
return {
|
||||
"model": "gpt-x",
|
||||
"vendor_format": vendor,
|
||||
"params": params or {"temperature": 0.25},
|
||||
"chat": {"last_user": "Привет"},
|
||||
"OUT": {},
|
||||
"incoming": incoming or {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {"x": "X-HEADER"},
|
||||
"json": {},
|
||||
},
|
||||
}
|
||||
|
||||
async def scenario_bare_vars_and_braces():
|
||||
print("\n=== MACROS 1: Bare [[NAME]] и {{ NAME }} + числа/объекты без кавычек ===")
|
||||
@@ -63,6 +38,7 @@ async def scenario_bare_vars_and_braces():
|
||||
out = await PipelineExecutor(p).run(_ctx())
|
||||
print("OUT:", _pp(out))
|
||||
|
||||
|
||||
async def scenario_var_path_and_defaults():
|
||||
print("\n=== MACROS 2: [[VAR:path]] и {{ ...|default(...) }} (вложенные и JSON-литералы) ===")
|
||||
incoming = {
|
||||
@@ -101,6 +77,7 @@ async def scenario_var_path_and_defaults():
|
||||
out = await PipelineExecutor(p).run(_ctx(incoming=incoming, params={"temperature": 0.2}))
|
||||
print("OUT:", _pp(out))
|
||||
|
||||
|
||||
async def scenario_out_macros_full_and_short():
|
||||
print("\n=== MACROS 3: [[OUT:nX...]] и короткая форма [[OUTx]] ===")
|
||||
p = {
|
||||
@@ -142,6 +119,7 @@ async def scenario_out_macros_full_and_short():
|
||||
out = await PipelineExecutor(p).run(_ctx())
|
||||
print("OUT:", _pp(out))
|
||||
|
||||
|
||||
async def scenario_store_macros_two_runs():
|
||||
print("\n=== MACROS 4: [[STORE:key]] и {{ STORE.key }} между запусками (clear_var_store=False) ===")
|
||||
pid = "p_macros_4_store"
|
||||
@@ -198,6 +176,7 @@ async def scenario_store_macros_two_runs():
|
||||
out2 = await PipelineExecutor(p2).run(_ctx())
|
||||
print("RUN2:", _pp(out2))
|
||||
|
||||
|
||||
async def scenario_pm_prompt_blocks_to_provider_structs():
|
||||
print("\n=== MACROS 5: Prompt Blocks ([[PROMPT]]) → provider-structures (OpenAI) ===")
|
||||
# Проверяем, что [[PROMPT]] со списком блоков превращается в "messages":[...]
|
||||
@@ -232,6 +211,7 @@ async def scenario_pm_prompt_blocks_to_provider_structs():
|
||||
out = await PipelineExecutor(p).run(_ctx())
|
||||
print("OUT:", _pp(out))
|
||||
|
||||
|
||||
def run_all():
|
||||
async def main():
|
||||
await scenario_bare_vars_and_braces()
|
||||
@@ -242,5 +222,6 @@ def run_all():
|
||||
print("\n=== MACROS VARS SUITE: DONE ===")
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_all()
|
||||
249
tests/test_prompt_combine.py
Normal file
@@ -0,0 +1,249 @@
|
||||
import asyncio
|
||||
import json
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from agentui.pipeline.executor import PipelineExecutor
|
||||
import agentui.providers.http_client as hc
|
||||
from tests.utils import ctx as _ctx, pp as _pp
|
||||
|
||||
|
||||
# Capture of all outbound ProviderCall HTTP requests (one per run)
|
||||
CAPTURED: List[Dict[str, Any]] = []
|
||||
|
||||
|
||||
class DummyResponse:
|
||||
def __init__(self, status_code: int = 200, body: Dict[str, Any] | None = None):
|
||||
self.status_code = status_code
|
||||
self._json = body if body is not None else {"ok": True}
|
||||
self.headers = {}
|
||||
try:
|
||||
self.content = json.dumps(self._json, ensure_ascii=False).encode("utf-8")
|
||||
except Exception:
|
||||
self.content = b"{}"
|
||||
try:
|
||||
self.text = json.dumps(self._json, ensure_ascii=False)
|
||||
except Exception:
|
||||
self.text = "{}"
|
||||
|
||||
def json(self) -> Any:
|
||||
return self._json
|
||||
|
||||
|
||||
class DummyClient:
|
||||
def __init__(self, capture: List[Dict[str, Any]], status_code: int = 200):
|
||||
self._capture = capture
|
||||
self._status = status_code
|
||||
|
||||
async def __aenter__(self):
|
||||
return self
|
||||
|
||||
async def __aexit__(self, exc_type, exc, tb):
|
||||
return False
|
||||
|
||||
async def post(self, url: str, content: bytes, headers: Dict[str, str]):
|
||||
try:
|
||||
payload = json.loads(content.decode("utf-8"))
|
||||
except Exception:
|
||||
payload = {"_raw": content.decode("utf-8", errors="ignore")}
|
||||
rec = {"url": url, "headers": headers, "payload": payload}
|
||||
self._capture.append(rec)
|
||||
# Echo payload back to keep extractor happy but not tied to vendor formats
|
||||
return DummyResponse(self._status, {"echo": rec})
|
||||
|
||||
# RawForward may use .request, but we don't need it here
|
||||
async def request(self, method: str, url: str, headers: Dict[str, str], content: bytes | None):
|
||||
return await self.post(url, content or b"{}", headers)
|
||||
|
||||
|
||||
def _patch_http_client():
|
||||
"""Monkeypatch build_client used by ProviderCall to our dummy."""
|
||||
hc.build_client = lambda timeout=60.0: DummyClient(CAPTURED, 200) # type: ignore[assignment]
|
||||
# Также патчим символ, импортированный внутрь executor, чтобы ProviderCall использовал DummyClient
|
||||
import agentui.pipeline.executor as ex # type: ignore
|
||||
ex.build_client = lambda timeout=60.0: DummyClient(CAPTURED, 200) # type: ignore
|
||||
|
||||
|
||||
def _mk_pipeline(provider: str, prompt_combine: str) -> Dict[str, Any]:
|
||||
"""Build a minimal ProviderCall-only pipeline for a given provider and combine spec."""
|
||||
provider = provider.lower().strip()
|
||||
if provider not in {"openai", "gemini", "claude"}:
|
||||
raise AssertionError(f"Unsupported provider in test: {provider}")
|
||||
base_url = "http://mock.local"
|
||||
if provider == "openai":
|
||||
endpoint = "/v1/chat/completions"
|
||||
template = '{ "model": "{{ model }}", [[PROMPT]] }'
|
||||
elif provider == "gemini":
|
||||
endpoint = "/v1beta/models/{{ model }}:generateContent"
|
||||
template = '{ "model": "{{ model }}", [[PROMPT]] }'
|
||||
else: # claude
|
||||
endpoint = "/v1/messages"
|
||||
template = '{ "model": "{{ model }}", [[PROMPT]] }'
|
||||
p = {
|
||||
"id": f"p_prompt_combine_{provider}",
|
||||
"name": f"prompt_combine to {provider}",
|
||||
"loop_mode": "dag",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "ProviderCall",
|
||||
"config": {
|
||||
"provider": provider,
|
||||
"provider_configs": {
|
||||
provider: {
|
||||
"base_url": base_url,
|
||||
"endpoint": endpoint,
|
||||
"headers": "{}",
|
||||
"template": template,
|
||||
}
|
||||
},
|
||||
# Key under test:
|
||||
"prompt_combine": prompt_combine,
|
||||
# Prompt Blocks (PROMPT)
|
||||
"blocks": [
|
||||
{"id": "b1", "name": "sys", "role": "system", "prompt": "Ты — Narrator-chan.", "enabled": True, "order": 0},
|
||||
{"id": "b2", "name": "user", "role": "user", "prompt": "как лела", "enabled": True, "order": 1},
|
||||
],
|
||||
},
|
||||
"in": {},
|
||||
}
|
||||
],
|
||||
}
|
||||
return p
|
||||
|
||||
|
||||
def _ctx_with_incoming(incoming_json: Dict[str, Any], vendor: str = "openai") -> Dict[str, Any]:
|
||||
base = _ctx(vendor=vendor)
|
||||
inc = dict(base["incoming"])
|
||||
inc["json"] = incoming_json
|
||||
base["incoming"] = inc
|
||||
return base
|
||||
|
||||
|
||||
async def scenario_openai_target_from_gemini_contents():
|
||||
print("\n=== PROMPT_COMBINE 1: target=openai, incoming=gemini.contents & PROMPT ===")
|
||||
_patch_http_client()
|
||||
CAPTURED.clear()
|
||||
|
||||
# Incoming JSON in Gemini shape
|
||||
incoming_json = {
|
||||
"contents": [
|
||||
{"role": "user", "parts": [{"text": "Прив"}]},
|
||||
{"role": "model", "parts": [{"text": "И тебе привет!"}]},
|
||||
]
|
||||
}
|
||||
p = _mk_pipeline("openai", "[[VAR:incoming.json.contents]] & [[PROMPT]]")
|
||||
out = await PipelineExecutor(p).run(_ctx_with_incoming(incoming_json, vendor="gemini"))
|
||||
print("PIPE OUT:", _pp(out))
|
||||
assert CAPTURED, "No HTTP request captured"
|
||||
req = CAPTURED[-1]
|
||||
payload = req["payload"]
|
||||
# Validate OpenAI body
|
||||
assert "messages" in payload, "OpenAI payload must contain messages"
|
||||
msgs = payload["messages"]
|
||||
# Expected: 2 (converted Gemini) + 2 (PROMPT blocks system+user) = 4
|
||||
assert isinstance(msgs, list) and len(msgs) == 4
|
||||
roles = [m.get("role") for m in msgs]
|
||||
# Gemini model -> OpenAI assistant
|
||||
assert "assistant" in roles and "user" in roles
|
||||
# PROMPT system+user present (system may be not first without @pos; we just ensure existence)
|
||||
assert any(m.get("role") == "system" for m in msgs), "System message from PROMPT must be present"
|
||||
|
||||
|
||||
async def scenario_gemini_target_from_openai_messages():
|
||||
print("\n=== PROMPT_COMBINE 2: target=gemini, incoming=openai.messages & PROMPT ===")
|
||||
_patch_http_client()
|
||||
CAPTURED.clear()
|
||||
|
||||
incoming_json = {
|
||||
"messages": [
|
||||
{"role": "system", "content": "Системный-тест из входящего"},
|
||||
{"role": "user", "content": "Its just me.."},
|
||||
{"role": "assistant", "content": "Reply from model"},
|
||||
]
|
||||
}
|
||||
p = _mk_pipeline("gemini", "[[VAR:incoming.json.messages]] & [[PROMPT]]")
|
||||
out = await PipelineExecutor(p).run(_ctx_with_incoming(incoming_json, vendor="openai"))
|
||||
print("PIPE OUT:", _pp(out))
|
||||
assert CAPTURED, "No HTTP request captured"
|
||||
payload = CAPTURED[-1]["payload"]
|
||||
# Validate Gemini body
|
||||
assert "contents" in payload, "Gemini payload must contain contents"
|
||||
cnts = payload["contents"]
|
||||
assert isinstance(cnts, list)
|
||||
# PROMPT system goes to systemInstruction, user block goes to contents
|
||||
assert "systemInstruction" in payload, "Gemini payload must contain systemInstruction when system text exists"
|
||||
si = payload["systemInstruction"]
|
||||
# SystemInstruction.parts[].text must include both incoming system and PROMPT system merged
|
||||
si_texts = []
|
||||
try:
|
||||
for prt in si.get("parts", []):
|
||||
t = prt.get("text")
|
||||
if isinstance(t, str) and t.strip():
|
||||
si_texts.append(t.strip())
|
||||
except Exception:
|
||||
pass
|
||||
joined = "\n".join(si_texts)
|
||||
assert "Системный-тест из входящего" in joined, "Incoming system must be merged into systemInstruction"
|
||||
assert "Narrator-chan" in joined, "PROMPT system must be merged into systemInstruction"
|
||||
|
||||
|
||||
async def scenario_claude_target_from_openai_messages():
|
||||
print("\n=== PROMPT_COMBINE 3: target=claude, incoming=openai.messages & PROMPT ===")
|
||||
_patch_http_client()
|
||||
CAPTURED.clear()
|
||||
|
||||
incoming_json = {
|
||||
"messages": [
|
||||
{"role": "system", "content": "Системный-тест CLAUDE"},
|
||||
{"role": "user", "content": "Прив"},
|
||||
{"role": "assistant", "content": "Привет!"},
|
||||
]
|
||||
}
|
||||
p = _mk_pipeline("claude", "[[VAR:incoming.json.messages]] & [[PROMPT]]")
|
||||
out = await PipelineExecutor(p).run(_ctx_with_incoming(incoming_json, vendor="openai"))
|
||||
print("PIPE OUT:", _pp(out))
|
||||
assert CAPTURED, "No HTTP request captured"
|
||||
payload = CAPTURED[-1]["payload"]
|
||||
# Validate Claude body
|
||||
assert "messages" in payload, "Claude payload must contain messages"
|
||||
assert "system" in payload, "Claude payload must contain system blocks"
|
||||
sys_blocks = payload["system"]
|
||||
# system must be array of blocks with type=text
|
||||
assert isinstance(sys_blocks, list) and any(isinstance(b, dict) and b.get("type") == "text" for b in sys_blocks)
|
||||
sys_text_join = "\n".join([b.get("text") for b in sys_blocks if isinstance(b, dict) and isinstance(b.get("text"), str)])
|
||||
assert "Системный-тест CLAUDE" in sys_text_join, "Incoming system should be present"
|
||||
assert "Narrator-chan" in sys_text_join, "PROMPT system should be present"
|
||||
|
||||
|
||||
async def scenario_prepend_positioning_openai():
|
||||
print("\n=== PROMPT_COMBINE 4: target=openai, PROMPT@pos=prepend & incoming.contents ===")
|
||||
_patch_http_client()
|
||||
CAPTURED.clear()
|
||||
|
||||
incoming_json = {
|
||||
"contents": [
|
||||
{"role": "user", "parts": [{"text": "A"}]},
|
||||
{"role": "model", "parts": [{"text": "B"}]},
|
||||
]
|
||||
}
|
||||
# Put PROMPT first; ensure system message becomes first in messages
|
||||
p = _mk_pipeline("openai", "[[PROMPT]]@pos=prepend & [[VAR:incoming.json.contents]]")
|
||||
out = await PipelineExecutor(p).run(_ctx_with_incoming(incoming_json, vendor="gemini"))
|
||||
print("PIPE OUT:", _pp(out))
|
||||
assert CAPTURED, "No HTTP request captured"
|
||||
payload = CAPTURED[-1]["payload"]
|
||||
msgs = payload.get("messages", [])
|
||||
assert isinstance(msgs, list) and len(msgs) >= 2
|
||||
first = msgs[0]
|
||||
# Expect first to be system (from PROMPT) due to prepend
|
||||
assert first.get("role") == "system", f"Expected system as first message, got {first}"
|
||||
|
||||
|
||||
def test_prompt_combine_all():
|
||||
async def main():
|
||||
await scenario_openai_target_from_gemini_contents()
|
||||
await scenario_gemini_target_from_openai_messages()
|
||||
await scenario_claude_target_from_openai_messages()
|
||||
await scenario_prepend_positioning_openai()
|
||||
print("\n=== PROMPT_COMBINE: DONE ===")
|
||||
asyncio.run(main())
|
||||
23
tests/test_pytest_wrapper.py
Normal file
@@ -0,0 +1,23 @@
|
||||
# Pytest-обёртка для существующих сценариев, которые сами себя запускают через run_all()/run_checks()
|
||||
# Позволяет запускать все тесты одной командой: python -m pytest -q
|
||||
# Не меняем исходные файлы, просто вызываем их публичные функции из pytest-тестов.
|
||||
|
||||
def test_executor_iterative():
|
||||
# tests/test_executor_iterative.py содержит run_checks() (внутри сам asyncio.run)
|
||||
from tests.test_executor_iterative import run_checks
|
||||
run_checks()
|
||||
|
||||
def test_edge_cases():
|
||||
# tests/test_edge_cases.py содержит run_all() (внутри сам asyncio.run)
|
||||
from tests.test_edge_cases import run_all
|
||||
run_all()
|
||||
|
||||
def test_macros_and_vars():
|
||||
# tests/test_macros_vars.py содержит run_all() (внутри сам asyncio.run)
|
||||
from tests.test_macros_vars import run_all
|
||||
run_all()
|
||||
|
||||
def test_while_nodes():
|
||||
# наш новый набор сценариев; внутри есть run_all() со своим asyncio.run
|
||||
from tests.test_while_nodes import run_all
|
||||
run_all()
|
||||
134
tests/test_while_nodes.py
Normal file
@@ -0,0 +1,134 @@
|
||||
import asyncio
|
||||
from agentui.pipeline.executor import PipelineExecutor
|
||||
from tests.utils import ctx as _ctx
|
||||
|
||||
|
||||
async def scenario_providercall_while_ignore():
|
||||
# ProviderCall with while loop and ignore_errors enabled.
|
||||
# No base_url is provided to force ExecutionError inside node.run();
|
||||
# wrapper will catch it and expose {"error": "..."} plus vars.
|
||||
p = {
|
||||
"id": "p_pc_while_ignore",
|
||||
"name": "ProviderCall while+ignore",
|
||||
"loop_mode": "dag",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "ProviderCall",
|
||||
"config": {
|
||||
"provider": "openai",
|
||||
# while: 3 iterations (0,1,2)
|
||||
"while_expr": "cycleindex < 3",
|
||||
"while_max_iters": 10,
|
||||
"ignore_errors": True,
|
||||
# no base_url / provider_configs to trigger error safely
|
||||
},
|
||||
"in": {}
|
||||
}
|
||||
]
|
||||
}
|
||||
out = await PipelineExecutor(p).run(_ctx())
|
||||
assert isinstance(out, dict)
|
||||
# Wrapper returns final out with .vars merged by executor into STORE as well, but we assert on node out.
|
||||
vars_map = out.get("vars") or {}
|
||||
assert isinstance(vars_map, dict)
|
||||
# Final iteration index should be 2
|
||||
assert vars_map.get("WAS_ERROR__n2") is True
|
||||
assert vars_map.get("CYCLEINDEX__n2") == 2
|
||||
|
||||
|
||||
async def scenario_rawforward_while_ignore():
|
||||
# RawForward with while loop and ignore_errors enabled.
|
||||
# No base_url and incoming.json is a plain string -> detect_vendor=unknown -> ExecutionError,
|
||||
# wrapper catches and returns {"error": "..."} with vars set.
|
||||
p = {
|
||||
"id": "p_rf_while_ignore",
|
||||
"name": "RawForward while+ignore",
|
||||
"loop_mode": "dag",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "RawForward",
|
||||
"config": {
|
||||
"while_expr": "cycleindex < 2",
|
||||
"while_max_iters": 10,
|
||||
"ignore_errors": True,
|
||||
# no base_url; vendor detect will fail on plain text
|
||||
},
|
||||
"in": {}
|
||||
}
|
||||
]
|
||||
}
|
||||
ctx = _ctx()
|
||||
# Provide incoming as plain text-like JSON so detect_vendor returns unknown
|
||||
ctx["incoming"] = {
|
||||
"method": "POST",
|
||||
"url": "http://example.local/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {"content-type": "text/plain"},
|
||||
"json": "raw-plain-body-simulated"
|
||||
}
|
||||
out = await PipelineExecutor(p).run(ctx)
|
||||
assert isinstance(out, dict)
|
||||
vars_map = out.get("vars") or {}
|
||||
assert isinstance(vars_map, dict)
|
||||
# Final iteration index should be 1 (0 and 1)
|
||||
assert vars_map.get("WAS_ERROR__n1") is True
|
||||
assert vars_map.get("CYCLEINDEX__n1") == 1
|
||||
|
||||
|
||||
async def scenario_providercall_while_with_out_macro():
|
||||
# SetVars -> ProviderCall while uses OUT from n1 in expression
|
||||
# Expression: ([[OUT:n1.vars.MSG]] contains "123") && (cycleindex < 2)
|
||||
# Ignore errors to bypass real HTTP
|
||||
p = {
|
||||
"id": "p_pc_while_out_macro",
|
||||
"name": "ProviderCall while with OUT macro",
|
||||
"loop_mode": "iterative",
|
||||
"nodes": [
|
||||
{
|
||||
"id": "n1",
|
||||
"type": "SetVars",
|
||||
"config": {
|
||||
"variables": [
|
||||
{"id": "v1", "name": "MSG", "mode": "string", "value": "abc123xyz"}
|
||||
]
|
||||
},
|
||||
"in": {}
|
||||
},
|
||||
{
|
||||
"id": "n2",
|
||||
"type": "ProviderCall",
|
||||
"config": {
|
||||
"provider": "openai",
|
||||
"while_expr": "([[OUT:n1.vars.MSG]] contains \"123\") && (cycleindex < 2)",
|
||||
"while_max_iters": 10,
|
||||
"ignore_errors": True
|
||||
},
|
||||
"in": {
|
||||
"depends": "n1.done"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
out = await PipelineExecutor(p).run(_ctx())
|
||||
assert isinstance(out, dict)
|
||||
vars_map = out.get("vars") or {}
|
||||
assert isinstance(vars_map, dict)
|
||||
# Since MSG contains "123" and cycleindex < 2, two iterations (0,1)
|
||||
assert vars_map.get("WAS_ERROR__n2") is True
|
||||
assert vars_map.get("CYCLEINDEX__n2") == 1
|
||||
|
||||
|
||||
def run_all():
|
||||
async def main():
|
||||
await scenario_providercall_while_ignore()
|
||||
await scenario_rawforward_while_ignore()
|
||||
await scenario_providercall_while_with_out_macro()
|
||||
print("\n=== WHILE_NODES: DONE ===")
|
||||
asyncio.run(main())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_all()
|
||||
52
tests/utils.py
Normal file
@@ -0,0 +1,52 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
|
||||
def pp(obj: Any, max_len: int = 800) -> str:
|
||||
"""
|
||||
Pretty-print JSON-like objects in tests with length guard.
|
||||
"""
|
||||
try:
|
||||
s = json.dumps(obj, ensure_ascii=False, indent=2)
|
||||
except Exception:
|
||||
s = str(obj)
|
||||
if len(s) > max_len:
|
||||
return s[:max_len] + "...<truncated>"
|
||||
return s
|
||||
|
||||
|
||||
def base_ctx(vendor: str = "openai") -> Dict[str, Any]:
|
||||
"""
|
||||
Base context used by edge-case tests (mirrors previous _base_ctx).
|
||||
"""
|
||||
return {
|
||||
"model": "gpt-x",
|
||||
"vendor_format": vendor,
|
||||
"params": {"temperature": 0.1},
|
||||
"chat": {"last_user": "hi"},
|
||||
"OUT": {},
|
||||
}
|
||||
|
||||
|
||||
def ctx(vendor: str = "openai", incoming: Optional[Dict[str, Any]] = None, params: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
|
||||
"""
|
||||
General context used by macros/vars tests (mirrors previous _ctx).
|
||||
"""
|
||||
return {
|
||||
"model": "gpt-x",
|
||||
"vendor_format": vendor,
|
||||
"params": params or {"temperature": 0.25},
|
||||
"chat": {"last_user": "Привет"},
|
||||
"OUT": {},
|
||||
"incoming": incoming
|
||||
or {
|
||||
"method": "POST",
|
||||
"url": "http://localhost/test",
|
||||
"path": "/test",
|
||||
"query": "",
|
||||
"headers": {"x": "X-HEADER"},
|
||||
"json": {},
|
||||
},
|
||||
}
|
||||